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A sinc-function based method for frequency evaluation  

Andrea Amalia Minda, Gilbert-Rainer Gillich, Ana-Maria Budai 

Accurate frequency assessment is nowadays required in the mechanical 

engineering applications. Because in the standard methods that allow 

finding the real frequency occur errors, which come from the fact that 

they depend largely on the acquisition time, we set out to improve these 

methods. The purpose of this work is to find the maximum amplitude of 

the interpolation curve that passes through two amplitude peaks on two 

adjacent spectral lines. The method presented in the paper ensures a 

high precision when determining the frequency indicated by the 

maximizer. 
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1. Introduction 

The standard methods for determining the resonance frequencies have shown 

a low sensitivity due to the direct influence of the acquisition time on the accuracy 

of the result [1-3]. In essence, the frequency resolution, that is the distance between 

two consecutive values belonging to the frequency spectrum, is the lower that is the 

longer the acquisition time and the length of the acquired signal. 

The signal processing by standard methods involves the use of interpolation to 

obtain the waveform, starting from a limited number of point values. At present, 

signal processing in order to identify the frequency value, using interpolation, 

implies the analysis of the maximizer and at most two other neighboring spectral 

lines [4-10]. 

 It was found that although by performing a frequency-amplitude coupled 

analysis, within the same spectrum, the accuracy of the result increases, depending 

on the length of the acquired signal respectively on the acquisition time remains at 

the same level [11, 12]. 

 Another direction of analysis to determine the frequency of the signal is the 

fragmentation of the signal generated in three distinct spectra followed by the 

concomitant processing of the maximizer in each obtained spectrum [13-15]. 
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 A different method of identifying, precisely, the frequency of a signal is the 

generation of a spectrum based on maximizer of the different spectra belonging to 

the analyzed signal, spectra obtained at different acquisition times. This method 

practically eliminates the direct dependence on acquisition times, respectively the 

signal length, the errors induced by the process being very small compared to those 

generated by using the standard methods. Using this method it is observed that the 

distribution of the maximizer is done through a pseudo-sinc function. The 

identified pseudo-sinc function is asymmetric but generates frequencies close to the 

real one and thus can be used to perform spectral analysis [16]. 

 In this paper we introduce a method to use the sinc function for interpolation, 

which eliminates the disadvantage of the pseudo-sinc function asymmetry, and 

permits accurately evaluating the frequencies of a signal. 

2. Determining the correct frequency 

We consider a continuous harmonic signal having the known amplitude A and 

the frequency f. The expression describing the discrete form of the continuous 

signal has, according to [17], the form { } [ ] [ ] [ ] [ ]{ }1,...,,...,1,0 −= Nxkxxxx . Here, N 

is the number of samples used to describe the discrete signal. It is shown that 

for each sequence element of the mentioned expression, to which corresponds a 

real coefficient aj and an imaginary coefficient bj, a module Xj can be associated. 

This module Xj can be determined for each desired signal time length tS. 

 The coefficients aj and bj for the signal having the time length tS are defined by 

the expressions: 
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where j = 0...N-1 and ∆f = 1 / tS is the frequency resolution. Due to the spectrum 

symmetry, it is sufficient to take N/2 spectral lines to define the signal in the 

frequency domain. 

By integrating the expressions of the coefficients aj and bj , we obtain: 
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 Because the term fjf ∆+  from the denominator is much larger than the 

numerator, the fractions containing this term can be neglected. 

 Thus, the coefficients become: 
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where the function sinc is by definition, in the digital signal processing theory: 
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 If the difference 0→∆− fjf  
that is the product fj∆  

approaches the 

frequency f of the analyzed signal, the sinc function will be close to 1 and the 

maximizer Xj will approach to the true value of the amplitude of the signal. If the 

frequency f of the analyzed signal departs as the measured frequency fj∆ the value 

of the maximizer Xj determined with the sinc function decreases and its amplitude 

and frequency are not in line with reality. In the literature, this phenomenon is 

known as leakage. 

  

 

Figure 1. The spectrum indicating the amplitudes for the sinc function 
  

 If we note fjf
m

∆= and choose two points on two neighboring spectral lines 

having the amplitudes Aj and Aj+1 that belong to the main lobe of the sinc function 
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(Figure 1), we can determine the estimated frequency at the position where the sinc 

function get maxima. We note this frequency fe. 

 To find fe, we solve the system of equations below, written for the two 

amplitudes Aj and Aj+1 found on the spectral lines j and j + 1, located at a distance 

f∆  one from each other:  
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 From relation (10) we have that: 
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 Solving the system formed by the equations (9) and (11), knowing that 
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or, if expressing in accordance with the frequency measured at the first spectral line 

of the main lobe: 
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 This formula allows us to determine the estimated frequency when we know 

the measured frequency for the spectral line j and the amplitudes Aj and Aj+1 for 

two considered points, taken from the main lobe.  

3. Experimental testing 

In our tests we wanted to show that, unlike the standard DFT, the method we 

propose ensures better accuracy when calculating the frequency of a signal. Thus, 

we studied the influence of the length of the analysis time on the accuracy of 

determining the frequency. For this purpose, we have generated, using the PyFEST 

program, a signal having the frequency fG = 7 Hz and the amplitude AG = 1 m/s
2
, 

and the different scenarios analyzed are presented in Table 1.  
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Table 1. Different scenarios for the generated signal 
Sampling 

rate 
r 1000 

Number 

of 

samples 
N 343 486 629 771 914 1057 1200 

Number 

of cycles 
n 2.4 3.4 4.4 5.4 6.4 7.4 8.4 

Time of 

analysis 
ts 0.34285 0.48571 0.62857 0.77142 0.91428 1.05714 1.2 

 

By varying the analysis time, implicitly the number of cycles, for each 

frequency measured fm we considered two points on the main lobe, of amplitude Aj 

and Aj+1 and based on (13) we determined the estimated frequency  fe . The results 

are presented in the Table 2. It is found that with the increase of the number of 

cycles, the value of the estimated frequency became very close to the real one. 

Thus, after considering 8 cycles, the error becomes very small and it is no longer 

necessary to increase the signal length in order to obtain a frequency value very 

close to the real one.  

 

Table 2. Values used to estimate the frequency  

n 2.4 3.4 4.4 5.4 6.4 7.4 8.4 

ts 0.34285 0.48571 0.62857 0.77142 0.91428 1.05714 1.2 

fm 5.848 6.1856 6.3694 6.4935 6.5717 6.6288 6.6722 

Aj 0.8113 0.79301 0.78301 0.78234 0.77785 0.7743 0.7713 

Aj+1 0.46357 0.12159 0.48312 0.48039 0.48511 0.4907 0.4950 

fe 6.9107 6.9588 6.9775 6.9874 6.9921 6.9949 6.9966 

 

 

Through the tests performed it was found that if the acquisition time is greater 

than 1s, the frequency can be estimated with very good accuracy. Thus, it is found 

that the errors are very small if we use the proposed method, as opposed to the 

DFT standard, as can be seen from Figure 2. 

In table 3 we present the errors achieved if estimating the frequency with the 

standard DFT and the proposed method. One can observe that these errors are less 

than 17% if the standard DFT is utilized, while significantly lower error values 

result for the estimation with the proposed method (less than 1.3%). 
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Table 3. Errors achieved by involving the standard DFT and the proposed method   

n 2.4 3.4 4.4 5.4 6.4 7.4 8.4 

ts (s) 0.34285 0.48571 0.62857 0.77142 0.91428 1.05714 1.2 

fG (Hz) 7 7 7 7 7 7 7 

fm (Hz) 5.848 6.1856 6.3694 6.4935 6.5717 6.6288 6.6722 

εm (%) 16.4571 11.6342 9.0085 7.23571 6.1185 5.3028 4.6828 

fe (Hz) 0.8113 0.79301 0.78301 0.78234 0.77785 0.7743 0.7713 

εe (%) 1.2757 0.5885 0.3214 0.18 0.1128 0.07285 0.0485 

 

The method is simple to be used and can be implemented in a program to 

obtain an accurate frequency estimation in real time.  

 

 

Figure 2. The estimated frequencies using the standard DFT and the proposed 

method 

The frequencies estimated by involving this algorithm permitted observing the 

occurrence of damage in early stage [18-20], which qualifies the vibration-based 

methods for damage detection purposes. 

4. Conclusion 

The proposed method and the formula found allow us to estimate the 

frequency with high accuracy at a fairly small number of cycles, as opposed to the 

standard DFT, which needs over 1000 cycles to obtain the same precision that we 

obtained with this method, using only 8 cycles.  
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Thus, by knowing the frequency fjf
m

∆=  measured at the spectral line j, and 

the two amplitudes associated with the two spectral lines j and j + 1, we can 

determine the estimated frequency. The achieved results show that the errors are 

small enough to permit observing small frequency changes. In consequence, by 

applying this method for estimating the natural frequencies of structures we can 

assess damages in early state.    
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