

Models for measuring distances used to obtain optimal locations

Olga-Ioana Amariei, Codruta-Oana Hamat, Daniel-Mihai Amariei

In this paper we propose a protocol for economic decision-making by the management of an industrial enterprise, which wishes to set up a new production unit. The problem is finding the location of the new production unit, which will minimize the total transport cost, consisting of an amount of costs directly proportional to the distances between the new and existing locations. In order to obtain the optimum location, the QSB software package was used, which uses, besides the Manhattan model and the Euclidean and Euclidean quadratic distance measurement model.

Keywords: median method, optimization, Manhattan distance, Euclidean distance, location, total cost.

1. Introduction

Starting from the decision of the management of an industrial enterprise to open a new work point in which to produce some of the representative products of the company, we arrive at solving the problem of locating a new production unit, the objective being to minimize the total transport cost between this and the supply / distribution units. For this type of problem, we first apply the median method. After finding the location of the new production unit, following the application of the median method, the QSB software package is used, because it uses in addition to the rectilinear (Manhattan distance) distance measurement and Euclidean as well as the Euclidean square. Manhattan distance and Euclidean distance are the most common functions of distance in a location analysis [4].

The rectilinear model is used especially when we study the arrangement of production units, American cities, etc. generally when the arrangement is made after a grid of rectangles. For this reason, the distance measurement model is also called the *Manhattan measurement system* [5, 9].

2. Materials and Methods

Starting from the fact that we do not yet know where the new production unit will be located, we cannot specify the distance between it and the supply and distribution bases, without a general expression for calculating the distance between two locations. If (x_i, y_i) and (x_i, y_i) represent the coordinates of two locations i and j, then the distance between i and j, depending on the distance measurement model, can be [8, 9]:

- $|\mathbf{x}_i \mathbf{x}_j| + |\mathbf{y}_i \mathbf{y}_j|$, in the case of the rectilinear model (Manhattan distance); $[(\mathbf{x}_i \mathbf{x}_j)_2^2 + (\mathbf{y}_i \mathbf{y}_j)_2^2]^{0.5}$, in the case of the Euclidean model;
- $(x_i x_j) + (y_i y_j)$, in the case of the Euclidean square model;

2.1. Locating the new production unit by the median method

For the new production unit, a location is sought, taking into account the factors influencing the location, namely, those regarding the existence of the supply bases and the customers. This new production unit will be sourced from five suppliers (rated A, B, C, D and E) and will deliver its finished products to two central warehouses (rated F and G). The number of annual transport routes between the new production unit and these units, as well as the locations of these supply and distribution bases are presented in table 1.

Supply / distribution		Coordinates [km]		Nr. transport courses	Unit cost of transport course
base loo	cations		,) T	[u.m./km]
		X	У	N	C
	А	20	80	1200	1
	В	100	70	1000	1
Suppliers	С	40	60	900	1
	D	80	40	800	1
	Е	100	30	1300	1
Clients	F	10	20	1200	1
	G	70	90	2600	1

Table 1. Input data of the problem

Starting from the existing data, the input data of the problem, the median value of the total cost per unit of distance is established. Unit transport costs depend on the location to which the transport is made. Being different, instead of using the value specific to the total number of courses as a median value, we will use the median value of the total cost per unit of distance [7]. We proceed as follows:

- for each supply / distribution location, the cost of the location per distance unit is calculated, by multiplying the number of transport course by the unit cost of a course
- the total cost per unit of distance is then calculated, adding up the costs of locations per unit of distance;
 - the median value of the total costs is calculated as follows:

$$V_{mc} = (\sum N \cdot C/2) + 1$$
, if $\sum N \cdot C$ odd number (1)

$$V_{mc} = \sum N \cdot C/2$$
, if $\sum N \cdot C$ even number (2)

$$V_{\rm mc} = \sum N \cdot C/2 = 9000/2 = 4500 \tag{3}$$

Now having the median value, the x and y coordinates of the location of the new production unit are determined. For this we go through the x-axis, then y in the positive direction, starting from the origin and identifying the locations in the order in which they appear. [7].

For the x coordinate, the median value (4500) corresponds to the location G ($x_0 = x_G = 70$), and for the y coordinate, the median value corresponds to the location B ($y_0 = y_B = 70$). Therefore, the optimal location, following the application of the median method, for the production unit has the coordinates (70,70). The total transportation cost is calculated as the sum of costs directly proportional to the distances between the new location and the existing ones [3], and is equal to 445.000 m.u. according to table 2.

	Tuble 2. Calculation of the total transport cost								
	Coor- Nr.		Unitary	Distance	from the ne	rom the new pro-			
Loca	din	atec	transport	cost per	duction un	nit to the lo	cations	per unit	
Loca-	um	ales	courses	course	of supp	ly / distribu	tion	distance	
tion	x	у	Ν	С	70-x _i	70-y _i	\mathbf{D}_{i}	$N_i^*C_i^*D_i$	
А	20	80	1200	1	50	10	60	72000	
В	10	70	1000	1	30	0	30	30000	
С	40	60	900	1	30	10	40	36000	
D	80	40	800	1	10	30	40	32000	
E	10	30	1300	1	30	40	70	91000	
F	10	20	1200	1	60	50	110	132000	
G	70	90	2600	1	0	30	30	78000	
							Σ	445.000	

 Table 2. Calculation of the total transport cost

2.2. Optimal location of the production unit using WinQSB

The QSB software package uses three types of distance measurement models, namely [5]: rectilinear, Euclidean and quadratic Euclidean.

After entering the input data of the problem, presented in table 1, after using the rectilinear distance measurement model, we obtain the coordinates (70,70) as the optimal location for the new production unit (fig.1).

02-17-2019	New Facility	X Axis	Y Axis
1	UP	70	70
Total	Flow to&from	New Location	= 9000
Total	Cost to&from	New Location	= 445000
(by	Rectilinear	Distance)	

Figure 1. The solution of the problem. Manhattan distance

Also, the value of the total cost per unit of distance is equal to 9000 m.u., and the total cost of transport is 445.000 m.u., resulting values and following the analytical calculation performed in section 2.1.

Eacility Location and Layout	02-17-2019 20:28:39	Facility Name	X Axis	Y Axis	Flow To All Facilities	Cost To All Facilities
File Format Results Utilities Window He	1	A	20	80	1200	72000
Show Location Solution	2	B	100	70	1000	30000
Show Location Analysis	3	С	40	60	900	36000
Show Location in Graph	4	D	80	40	800	32000
Show Eddation Distance	5	E	100	30	1300	91000
	6	F	10	20	1200	132000
	7	G	70	90	2600	52000
	8	UP	70	70	0	0
		Total			9000	445000
		Distance	Measure:	Rectilinear		

Figure 2. Analysis of the optimal location solution (rectilinear distance)

The graphical representation of the new location of the production unit is shown in Figure 3, and the distances between units in Figure 4.

Facility L	ocation and Layout										
le Format	Results Utilities Window H	Hþ									
	Show Location Solution Show Location Analysis		1			2) .	1)11	Π	\odot	8	
Optima	Show Location in Graph	ances for 2019									
l	Show Location Distance	02-11 20:1	7-2019 Te 12:15 A	To B	Te C	Te D	10 E	To F	To G	Te UP	Sub Tota
		Fro	mA 0	90	40	100	130	70	60	60	550
		Fre	m B 90	0	70	50	40	140	50	30	470
		Fro	m C 40	70	0	60	90	70	60	40	430
		Fro	m D 100	50	60	0	30	90	60	40	430
		Fre	mE 130	40	90	30	0	100	90	70	550
		Fit	m F 70	140	70	50	100	0	130	110	710
		Fro	m G 60	50	60	60	90	130	0	20	470
		From	• UP 60	30	40	40	70	110	20	0	370
		Sub	Total 550	470	430	430	550	710	470	370	3380

Figure 4. The distances between units

The results from using the square of the Euclidean distance (Figure 5) and the Euclidean distance (Figure 6) are presented below.

Results Utilities Window Help						
Show Location Solution		1	:	Z 🛄 i	1 III 🕑 🖇	
Show Location Analysis		-		-		
Show Location in Graph						
Show Location Distance	02-17-2019 20:36:00	Facility Name	X Axis	Y Axis	Flow To All Facilities	Cost To All Facilities
	1	Α	20	80	1200	2,439,481.50
	2	B	100	70	1000	1610679
	3	C	40	60	900	393,611.13
	4	D	80	40	800	644,987.63
	5	E	100	30	1300	3,237,882.75
	6	F	10	20	1200	5124815
	7	G	70	90	2600	2402432
	8	UP	60.89	61	0	0
		Total			9000	1.585389E+07
		Distance	Measure:	Squared	Euclidian	

Figure 5. The optimal solution (the square of the Euclidean distance)

Results Utilities Window I	Help				
Show Location Solution			∷ .	∕ <mark>Щ∎</mark> ⊞	29
Show Location Analysis	204.0				
Show Location in Graph	2019				
Show Location Distance		02-17-2019	New Facility	X Axis	Y Axis
	_	1	UP	64.60	69.42
		Total	Flow to&from	New Location	= 9000
		Total	Cost to&from	New Location	= 353,252.50
		(by	Euclidian	Distance)	

Figure 6. The optimal solution for placing in synthetic form (Euclidean distance)

The total transport cost is calculated by entering the coordinates of a certain placement (65,70).

02-17-2019	New Facility	X Axis	Y Axis
1	UP	65	70
Total	Flow to&from	New Location	= 9000
Total	Cost to&from	New Location	= 457000
(by	Rectilinear	Distance)	

Figure 7. Rectilinear model. Coordinates (65,70)

It can be observed that by changing the x coordinate of the location of the new production unit, the total transport cost also increased from 445.000 m.u. to 457.000 m.u.

3. Conclusion

From the solution provided by the WinQSB software, the coordinates at which the production unit should be located are different depending on the model used to measure distances, as follows:

Model	Coord	linates	Total cost
Widder	х	У	
The rectilinear distance	70	70	445.000
The Euclidean distance	64,60	69,42	353.252,50
The square of the Euclidean	60,89	61	15.853.890

Table 3. The results of the production unit location

The choice of the location of the new production unit will be made between the solution given by the rectilinear model (calculated and analytical) and the Euclidean one. As the total transport cost is lower in the case of the Euclidean distance than in the case of the Manhattan distance, this is considered the optimal solution. Therefore, the coordinates of the new production unit are (64.60; 69.42), and the total transport cost is 353.252,50 m.u.

Before making the final decision on the location of the production unit, some clarifications must be made, namely:

1. It has been taken into account that any point in the xOy coordinate system is fit for location;

2. The uneven terrain was not excluded from the analysis;

3. The existing roads, energy, population density, etc. are not taken into account.

References

- [1] Amariei O.I., *Aplicatii ale programului WinQSB în simularea sistemelor de productie*, Editura Eftimie Murgu, Resita, 2009.
- [2] Blăjină O.A., *Decizii optime în management cu WinQSB 2.0. Vol.1.*, Editura Albastră, Cluj-Napoca, 2011.
- [3] Ding-Zhu Du, Jie Sun, *Advances in Optimization and Approximation*, Kluwer Academic Publishers, Dordrecht, Boston, London, 1994.

- [4] Teodorović D., Janić M., *Transportation Engineering: Theory, Practice and Modeling*, Elsevier, 2017.
- [5] Gavotă M., Informatica Suport al deciziei, Bucuresti, 2004.
- [6] Jaba O., *Managementul productiei si operatiunilor*, Editura Sedcom Libris, Iasi, 2007.
- [7] Nitu E., Rotaru A., Belu N., *Ingineria și managementul producției 1. Lucrări de laborator*, București, 2012.
- [8] Drezner Z., Hamacher H.W., Facility Location: Applications and Theory, Springer, 2001.
- [9] Operations research (OR) Notes, <u>http://people.brunel.ac.uk/~mastjjb</u> /jeb/or/facloc.html (downloaded at September 20rd, 2019).

Addresses:

- Lect. Dr. Eng. Olga-Ioana Amariei, "Eftimie Murgu" University of Reşiţa, Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa, <u>o.amariei@uem.ro</u>
- Prof. Dr. Eng. Codruta-Oana Hamat, "Eftimie Murgu" University of Reşiţa, Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa, <u>c.hamat@uem.ro</u>
- Prof. Daniel-Mihai Amariei, "Traian Lalescu" National College, B-dul. A.I. Cuza, Nr. 7, 320108. Reşiţa, <u>amarieidaniel@yahoo.com</u>