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The Mechanism for Actuating and Automating the 
Shaking Tables  

Vasile Iancu  

In the paper, is present the shaking table designed for the laboratory 
use, to simulate the earthquakes behaviors. With this equipment we 
can study the dynamic behavior of civil engineering structures 
subjected to seismic motion. The vibratory movement of the shaking 
table is carried out by means of an electric motor which, through a 
crank mechanism, moves the shaking table. The smooth start of the 
shaking table and its movement is accomplished through a frequency 
converter, FRENIC-Mini series of general use, made by Fuji Electric C. 
Ltd. Tests was performed using a NI application with a laser 
displacement sensor, in order to find out the displacement precision. 
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1. Introduction.   

Now we have several different experimental techniques, to test the response 
of structures and to verify their seismic performance, one of this is the use of an 
earthquake shaking table. The shaking table is a device for shaking structural 
models or building components, with a wide variety of simulated ground motions, 
as well as reproductions of recorded earthquakes time-histories [1]. 

The current tables consist of a rectangular platform, which is driven in up to 
six degrees of freedom using servo-hydraulic systems, or actuators. The initial 
shaking table was made in 1893, at the University of Tokyo to classify the types of 
building construction [2], the motion of this shaking table was made by a simple 
wheel mechanism. Test models of the buildings are fixed to the up platform and 
shaken, often to the point of damage or failure. 

The shaking tables are also used in other fields of engineering, to test and 
qualify different parts of the vehicles, that must respect heavy vibration 
requirements specifications and standards i.e. road and railway vehicles, military 
standards, aerospace industry, or tried and desired properties of the soil properties 
[3], for civil and industrial structures [4], etc. 
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In order to be able to solve the increasing demands for diminishing the 
devastating effects of earthquakes, more powerful and bigger shaking tables have 
been built taking into account the implementation of smaller scaling factors 
involving higher dynamic forces [5]. 

 

2. Construction of the shaking table. 

The shaking table was made for improving the stability of the structures and 
their mode of operation, using different types of earthquake devices: friction 
pendulums [6], rubber bearings [7, 8] with different properties of the layers [9]. In 
the laboratory, we already use such insulators [10] for different tests [11]. The 
shaking table is also used for teaching the students the behavior of the structures 
if that are subject to seismic waves of an earthquake. 

The shaking table is built from rectangular pipes having on the top a plate 
made from wood with a thickness of 40 mm and a steel plate with a thickness of 
10 mm, the dimensions of the sliding table are 600x300x40 mm. Due to this height 
of the table 850 mm, the gravity center of the shaking table is bellow at 400 mm. 

Due to the uniform and rectilinear movement of the sliding table, the shaking 
table has to more legs in order to attenuate and increase her stability Figure 1. 

 

 
 

Figure 1. The shaking table 
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The circular movement of the electrical motor is transformed in rectilinear 
movement using a metallic gear, the connection between the sliding table and the 
metallic case of the shaking table, is made by a metallic ball-shaped guide Figure 
2, which take the translation movements at high speeds at a low noise level.  

 
Figure 2. The metallic ball-shaped guide of the shaking table 

 
3. The electric part of the shaking table. 

The movements requirement of the sliding plate of the shaking table are from 
0 to 400 rpm, for a fine translation motion it was necessary to mount a frequency 
converter, FRENIC-Mini series of general use Figure 3, made by Fuji Electric C. Ltd.  

The characteristics of frequency convertor are: range of power (0,1 kW—2,2 
kW for single phase feed and 0,4 kW—4,0 kW for three-phase power supply), 
output frequency max. 400Hz, breaking unit included (accept external breaking 
resistance), simplified torque control algorithm and energy saving function. 

 

 
 

Figure 3. The frequency converter, FRENIC-Mini 
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In order to slide the plate of the shaking table, that was equipped with an 
electrical wiring system Figure 4, commanded from the control panel where the 
frequency converter is mounted Figure 5.  

 

 

 

Figure 4. The wiring system of the shaking table 
 

 
 

Figure 5. The control panel of the shaking table 
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4. The calibration of the shaking table. 

The calibration of the shaking table was made with the LabVIEW program and 
the laser displacement tester, the results of the tests are in the Table 1 and the 
diagram of this results is presented in Figure 6. With the results of the 
displacement of the sliding plate I was able to determine the working frequency of 
the shaking table.  

 
Table 1 

Step Frequency (Hz) 

0 0 

1 0,323 

2 0,657 

3 0,995 

4 1,320 

5 1,650 

6 1,980 

 

 
 

Figure 6. The frequency diagram of the shaking table. 

4. Conclusions. 

After the tests, we have concluded that, for a safe operation at high levels the 
shaking table must be reinforced by lowering the center of gravity, for that at the 
bottom of the table a metal plate was mounted. 

The measurements made by LabVIEW program from National Instrument 
reveal some parasitic frequencies aspects of the cinematic chain and the metallic 
ball-shaped guide, these will be mitigated by using some elastomeric materials. 
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