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A Practical Method to Increase the Frequency 
Readability for Vibration Signals 

Jean Loius Ntakpe, Nicoleta Gillich, Gilbert-Rainer Gillich 

Damage detection and nondestructive evaluation of mechanical and 
civil engineering structures are nowadays very important to assess 
the integrity and ensure the reliability of structures. Thus, frequency 
evaluation becomes a crucial issue, since this modal parameter is 
mainly used in structural integrity assessment. The herein presented 
study highligts the possibility of increasing the frequency readability 
by involving a simple and cost-effective method. 
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1. Introduction 

Frequency estimation of real-life signals is becoming an important issue in 
various technical domains, among which is worth to mention structural health 

monitoring [1]. This emerging domain bases on analysis of vibration signals, most 
of them acquired for rapid damping structures [2]-[4]. A short acquisition time 

results due to the damping, which makes frequency evaluation difficult [5]. Several 
methods are used to improve the frequency readability, from complicated time- 

and resources-consuming procedures to simple algorithms [6]-[7].     

In this paper a frequency estimation method is introduced and the achieved 
results are compared with that obtained from standard frequency evaluation in 

order to find the accuracy of the proposed method.  
 

2. Problems in standard frequency evaluation 

Multidimensional signals are in general linear combination of sinusoids. 

Frequency evaluation makes use of this property, it being in fact the decomposition 
of the signal in harmonic components. This is usually made by the Fourier 

Transform or derivate procedures, i.e. Discret Fourier Transform (DFT), Power 

Spectrum (PS), Power Spectral density (PSD) and so on. 
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Figure 1. Digital signal.  

 

The problem arising from this procedure is the sinusoids’ frequencies. These 
have values fixed by the time of analysis [5], the difference between two 

consecutive sinusoids being in the relation:  
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where f∆ is the frequency resolution, j  is the number of the sinusoid placed at 

the j –th spectral line, N  is the total number of samples in the signal, τ  is the 

sampling time and sT  is the signal length in time.  

 

 
Figure 2. Power spectral representation of a harmonic signal for two  

analysis time lengths.  

 
Having a look onto figure 2 one can remark that different pick values are 

indicated for the two analysis cases, obviously associated with different 

frequencies. This shows that even for harmonic signals the standard frequency 

evaluation method is not suitable is short or medium analysis time is involved.  
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The real result is achieved for the analysis time for which the signal (sinusoid, 
in this case) contains entire number of cycles. For multidimensional signals the 

harmonic components has to fulfill individually this condition. This shows that the 
analysis time length for a multidimensional signal has to be adapted for each 

comprised harmonic component. The real frequency is always indicated by the 

highest amplitude in the spectra located in the neighborhood of the evaluated 
frequency, if different analysis times are involved. Based on this fact, in order to 

avoid numerous spectral analyses, a simple method to overcome this inconvenient 
is to use spline functions to find the pick amplitude-frequency pair. This concept is 

presented in the following section.  
 

3. Polynomial regression curves used in the frequency 

estimation process 

Spline functions are based on polynomials, which are functions involving only 
non-negative integer powers of x . The standard way to write a polynomial 

function is: 

                    
2 3

0 1 2 3( ) ... ...i n
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where the c ’s are real numbers called coefficients and n  is the degree of the 

polynomial. Also, for practical reasons, ( )iP x is sometimes denoted iy . 

It is possible to find the curve passing trough a number of fixed points; the 

degree of the polynomial is determined by the number of support points. Following 

procedure is used o find the coefficients c . From points 1 1 1A ( , )x y  to A ( , )n n nx y  

result n  pair values i ix y↔  and the next algebraic system:   
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There are many ways to solve the system and find the coefficients c , 

analytically or by means of algorithms implemented in software. Herein the system 

for the quadratic polynomial, i.e. a second degree polynomial constructed by using 

three points, is resolved analytically.  
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4. Frequency estimation by involving several amplitudes from 
the spectra  

The first analyzed case concerns the frequency estimation from three points 

located around the evaluated frequency, as shown in figure 3.  Note that the 

difference between any two consecutive frequency values indicated at the spectral 

lines is 1i ix x f−− = ∆ , which actually the frequency resolution is. For simplicity, 

the abscissa of the first considered point 1x (that is frequency 1jf − ) is taken zero; 

this is possible by the shifting the vertical axis with 1jf −  to the 1j − -th spectral 

line. The next two points are thus located at f∆  respectively 2 f∆ .  The three 

amplitudes 1jA − , jA  and 1jA +  confer the ordinates 1y , 2y  and 3y . This is 

illustrated in figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Power spectral representation of a sinusoid with highlighting the points 
used in frequency evaluation and the vertical axis shift.  

 

The three points have therefore the coordinates: 1B(0, )y , 2 2C( , )x y  and 

3 3D( , )x y . The point with biggest amplitude is always centrally located. From 

eq.(3), the coefficients result as: 
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The regression curve will indicate a pick max maxM( , )x y  between the two 

biggest amplitudes that is, in the case of figure 3, between points C and D. The 

abscissa maxx is used to correct the read frequency and attain a value closer to the 

real frequency. This is made by adding maxx  to 1jf −  which represents the vertical 

axis shift. The corrected frequency results as: 

1 maxcorr jf f x−= +                            (5) 

The maxx coordinate of point M  is found at the location where the derivative 

of the regression function ( )P x  is null. For 

1 2( ) 2 0P x c c x′ = + =                                        (6) 

which has the solution 

      max 1 2/ 2x c c= −                                           (7) 

An exemplification for a signal having the real frequency real 4Hzf = is 

presented below. The signal has an amplitude 1A =  and was created for a 

sampling rate 1000Hzsr = . Two cases differing the number of samples is 

presented. In the first analyzed case the number of samples is I 11300N = ,  and 

on two spectral lines the amplitudes have close values. For the second case the 

number of samples is II 11600N = ; here one point has the amplitude much higher 

as the other two points. For both cases, the resulted time length, frequency 
resolution and position of the first 6 spectral lines are presented in table 1. 

 
Table 1. Signal parameters for the two considered cases     

N  sT  f∆  0f  1f  2f  3f  5f  6f  

11300 1.13 0.8849 0 0.8849 1.7699 2.6548 3.5398 4.4247 

116200 1.16 0.8620 0 0.8620 1.7241 2.5862 3.4482 4.3103 

 

Table 2 presents the coordinates for the three points used to plot the 

polynomial curve. The frequency-amplitude pairs are indicated by coordinates ix  

respecyively iy . Note that 1 0x = , thus the free term of the polynomial function is 

1y . These points are used to calculate the coefficients c  which are indicated in 

table 3, togheder with the x -coordinate of point M , namely maxx . 

Figures 4 and 5 illustrate the regresion curves for the two analyzed cases.  



 208 

Table 2. Coordinates of the points considered to find the polynomial curve     

Case 

number 1x  2x  3x  1y  2y  3y  

1 0 0.8849 1.7699 0.03559 0.237207 0.223348 

2 0 0.862069 1.724138 0.129233 0.35403 0.022186 

 

Table 3. Coefficients of the polynomial curves and the abscissa of point M       

Case number 0c  1c  3c  max 1 2/ 2x c c= −  

1 0.03559 0.349571 -0.13757  1.270515 

2 0.1292 0.5836 -0.37451 0.779177 

 
Applying now eq. (5) to find the corrected frequency one obtain: 

- for case 1, the corrected frequency is 2.6548 1.2705 3.9253Hzcorrf = + =  is 

improved comparing to 3.53 Hz98readf =  or 4.42 Hz47readf = ;  

- for case 2, the corrected frequency is 0.7791 4.22733.4482 Hzcorrf = + =  in 

stand of 4.3103Hzreadf = . 

 

Figure 4. Polynomial function used to find the local maximum – case 1 
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Figure 5. Polynomial function used to find the local maximum – case 2 
 

The frequencies evaluated involving the standard procedure in comparison 
with that obtained using the proposed method is presented in table 4. It is shown 

that the method definitely improves the frequency readability, but the level of 
improvement depends on the relative position (in terms of amplitudes) of the 

involved points. 

 
Table 4. Frequency evaluated by standard procedure and involving the method 

proposed in this paper     

Case 

number 
[ ]readf Hz  [ ]realf Hz  Error [%] [ ]corrf Hz  Error [%] 

1.1 3.5398 -11.505 

1.2 4.4247 

4 

10.617 

3.9253 -1.867 

2 4.3013 4 7.532 4.2274 5.685 

 

Good results are achieved in the case that two points have closely-big 
amplitudes the correction, the error being reduced from around 10% to less than 

2%. In contrast, for the case when one point has much bigger amplitude as the 
other two, the correction is insignificant, from 7.5% to 5.5%.  
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4. Conclusion  

A method to increase the frequency readability is presented in this paper, and 
the results are compared with that obtained from standard evaluation. It is found 

that the proposed method increases the frequency readability, diminishing the 

maximum achieved error from 11% to 5%.  
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