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Ligia Munteanu, Rodica Ioan 

On the Evanescent Waves in Sonic Band-gaps 

The band-gaps or the Bragg reflections occur at different frequencies 
inverse proportional to the central distance between two scaterers. The 
evanescent waves may converge or diverge as distance goes to infinity. 
If the waves converge, they decay exponentially within the band-gaps 
and sustain an evanescent mode. If the waves diverge, a defect can 
terminate this exponential growth. 
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1. Introduction  

The existence of full band-gaps in sonic composites is reported not only by 
experimental works, but also by theoretical works [1-5].   

The key of the band-gap generation is the lack of purely real wave vector for 
certain modes of waves at certain frequencies. The wave amplitude may decay 

exponentially sustaining an evanescent mode, or can increase exponentially and a 

defect can terminate this exponential growth to sustain also an evanescent mode 
[6, 7]. The primary goal of this paper is to study a sonic system periodic/noperiodic 

in order to discern some of the most important features of the sonic composites, 
such as the full band-gaps and evanescent modes that are localized around 

defects.  

The periodic sonic system is consisting of an array of acoustic scatterers 
embedded in an epoxy matrix. The acoustic scatterers are hollow spheres made 

from a nonlinear isotropic piezoelectric ceramic, while the matrix is made from a 
nonlinear isotropic epoxy resin [8-15]. Acoustic scatterers are composed by 

piezoceramic hollow spheres of functionally graded materials - the Reddy graded 

hollow spheres. The simplest possible case for study the properties of a sonic 
composite is multilayer films consisted of alternating layers of material with 

different properties. This arrangement is not a new idea. Lord Rayleigh published 
in 1877 one of the first analysis of the optical properties of multilayer films. He 

shown that this type of photonic crystal can act as a mirror (a Bragg mirror) for 
light with a frequency within a specified range, and it can localize light propagation 
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if there are any defects in its structure. This concept is used in dielectric mirrors 
and optical filters [16, 17]. 

The non-periodic sonic system is a multilayer sonic film consists of alternating 
layers of material with different mechanical properties, following a triadic Cantor 

sequence [15]. Study of these sonic composites is enables to obtain the dispersion 

relation for defect modes, and the prediction of the evanescent nature of the 
modes inside the band-gaps. 

 
2. Periodic structures and band-gaps  

Let us consider a composite thin plate consting of an array of acoustic 
scatterers embedded in an epoxy matrix [8, 11]. The acoustic scatterers are hollow 

spheres made from a nonlinear isotropic piezoelectric ceramic (PZ), while the 
matrix is made from a nonlinear isotropic epoxy resin (ER). The sonic plate 

consists of 72 local resonators of diameter a . A rectangular coordinate system 

321 xxOx  is employed. The origin of the coordinate system 321 xxOx  is located at 

the left end, in the middle plane of the sample, with the axis 1Ox  in-plane and 

normal to the layers and the axis 3Ox  out-plane and normal to the plate. The 

length of the plate is l , its width is d , while the diameter of the hollow sphere is 

a  and its thickness is e a> .  

Consider now two piezoceramic hollow spheres with the ratio of the inner and 

outer radii 0ξ . Two laws represent the functionally graded property of the mate-

rial. The first one is the Reddy law [18] given by  

 (1 )p zM M Mλ λ= µ + − µ ,                                       (1) 

where 
b r

b a

−µ =
−

 , λ  is the inhomogeneoty parameter or gradient index, pM and 

zM are material constants of two materials, namely PZT-4 and ZnO. The case 

0λ =  corresponds to a homogeneous PZT-4 hollow sphere and λ → ∞ , to a ho-

mogeneous ZnO hollow sphere.  
Two and three strong attenuation bands, respectively, in the audible range are 

found at frequencies at 0.8 kHz and 8.5 kHz, and 0.8 kHz, 4.2kHz and 7.8 kHz, 

respectively, with a relative attenuation of 25dB. 
The guided waves are accompanied by evanescent waves which extend to the 

periodic array of the scatterers surrounding the wave-guide. It is strongly expected 
that mode coupling waves arise between adjacent wave-guides. The output of the 

coupled modes is compared with the input waves, as shown in Figure 1, in the 
case of Reddy law.  

A remarkable result is that the ratio of the coupled and input waves is −3 to −4 

dB around the frequency of 8kHz to 8.8kHz in the band-gap of the sonic material. 
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Figure 2 plots the dispersion curve including the first partial band-gaps for the 
composite. 

 
Figure 1. The input and coupled waves for the sonic composite 

 

Figure 2. Linear dispersion  
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The reduced units for the frequency are 0/ 2a cω π , with 0c the speed of sound 

in air. We see that the point defects confine acoustic waves in localized modes and 

in consequence the band-gaps are larger than in the case of the complete compos-
ite. The guided waves are accompanied by evanescent waves which extend to the 

periodic array of the scatterers surrounding the wave-guide.  
 

 

Figure 3. Band structure for the sonic composite 

Using the Joannopoulus representation [7] for the bad-gap structure, Figure 3 
presents the band structure with the evanescent modes with exponential decay for 

the sonic composite. The modes present purely imaginary wave vectors. The 
central grey region is the full band-gap ranged between 8.02 kHz and 8.72 kHz, 

given by the real part of the wave vector constrained in the first Brillouin zone for 

each frequency. The left region represents the imaginary part of the wave vector 
for longitudinal direction frequency (tension/compression), while the right region is 

the imaginary part of the wave vector for transverse direction frequency (shear). 
The red lines represent the imaginary part of the wave vector of the evanescent 

modes inside the bad-gap.  

If we want to have a full band-gap, we must have structures with band-gaps 
for both longitudinal and transverse waves in the same frequency region. 

The difference in the sound velocities between transverse and longitudinal 
modes causes partial gaps at different frequencies. If the mechanical contrast is 

small, these partial gaps are narrow and do not overlap. 
 As mechanical contrast increases, the partial gaps widen and begin to overlap 

in the same frequency region leading to the appearance of a full band-gap 
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independent of the polarization. It is strongly expected that mode coupling waves 
arise between adjacent wave-guides.   

3. Non-periodic structures and band-gaps  

Let us consider a 2D multilayer film of alternating layers of piezoelectric 
ceramics (PZ) and the  epoxy resin (ER), following a triadic Cantor sequence with 

31 elements (Figure 4). The length of the plate is l , the width of the smallest layer 

is /81l  and the thickness of the plate is 2h . The width of the plate is d [9].   

We choose this kind of structure due to its property of generating the sub-
harmonic waves which have a significant importance in the generation of the full 

band-gaps. 
 Alippi et al. [19-21] and Craciun et al. [22] show the experimental evidence 

of extremely low thresholds for subharmonic generation of ultrasonic waves in 1D 

artificial piezoelectric plates with Cantor-like structure, as compared to the corre-
sponding homogeneous and periodical plates. An anharmonic coupling between 

the extended-vibration (phonon) and the localized-mode (fracton) regimes ex-
plained this phenomenon. They demonstrate that the large enhancement of non-

linear interaction results from the more favorable frequency and spatial matching 
of coupled modes (fractons and phonons) in the Canto structure. The existence of 

multiple fracton and multiple phonon-mode regimes in the displacement field in 

such structure was analyzed by Scalerandi et al. (1999) and Chiroiu et al. (2001). 
 

 

Figure 4. The non-periodic structure with Cantor-like structure 

 
The calculus is carried out for l =  67.5 mm and 2h = 0.3 mm.  We refer to 

the plates with 31 elements (for /81a l= ). The resonant Lamb modes are excited 

by applying an external electric field 
0

1 3 0exp(i )E E E t= = ω on both sides of the 
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plate. The surface Lamb waves are superposition of longitudinal (symmetric 
waves) and shear modes (anti-symmetric waves or SV waves), which dominate the 

radial in-plane and vertical motion of particles in the film.  

The structure and size of the band-gap depend on 0E . If 0E  is increased 

above a threshold value 
0 5.27VthE =  the / 2ω  subharmonic generation is ob-

served. Note that Alippi obtains in the Cantor-like sample typical values of the low-
est threshold voltages of 3-5 V. The amplitude of waves at the surface of the plate 

is function of 0E .  

Figure 5 shows the Lamb normal mode / 2ω π = 334kHz, and the subharmonic 

mode / 4ω π = 167kHz. On the abscissa is a sketch of the plate geometry (dashed, 

piezoelectric ceramic and blue, epoxy resin). 

For the homogeneous plate the mismatch / 2nω − ω  is due to the symmetry 

of fundamental modes with respect to x . Only symmetric odd n  can induce a sub-

harmonic, but never / 2ω  coincides with a plate vibration mode.   

The fracton and phonon regimes are represented in Figures 6 and 7. The frac-

ton mode is found mostly near the eigenfrequencies.  

The band structure for the wave propagation in direction 1Ox  is displayed in 

Figure 8. The reduced unit of frequency is 0/ 2a cω π with 0c the speed of sound in 

air. For the frequency within this gap, there is no allowed waves mode in the ma-

terial, regardless of k .  

 

 
Figure 5. Lamb displacement of the normal and subharmonic modes 

 

We saw that the sonic film of alternating layers of material following a triadic 

Cantor sequence can prohibit the propagation of surface waves in 1Ox  direction. 

The band-gaps are generated in the band structure of the film, meaning that the 

waves are forbidden to propagate with certain frequencies in 1Ox  direction. Along-

side of Lamb waves there is another kind of motion of particles, namely in-plane 
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but in a direction perpendicular to the direction of wave propagation. These are 
Love waves (SH waves).  

We are interested to investigate if the band-gap can be extended to cover the 

Love waves that are propagating in the 1Ox  direction. By overlapping of all band-

gaps, a full band-gap can be resulting.  

 
Figure 6. The fracton regime 

 

 
 

Figure 7. The phonon regime 

 
The Love band structure is presented in Figure 9 to the left, and the full band-

gap to the right. We see that the overlapping is not too successfully in that the full 
band-gap has irregular shape that tangles the applications. An important topic that 

benefits the full band-gap generation is the presence of defects into the material. 

The points and line defects can correct the shape of the full band-gap because 
they may permit the localized modes to exist, with frequencies inside the band-

gaps. If a mode has a frequency in the gap, then it must exponentially decay once 
it enters the film. The defects can terminate the evanescent modes with 

exponential growth, to sustain also an evanescent mode.  
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Figure 8. Lamb band structure 

 

 
Figure 9. Love band structure (left) and the full band-gap (right) 

4. Conclusion  

The sonic composites exhibit important features such as full band-gaps where 

the waves (sound) is not allowed to propagate due to complete reflections, and 
modes that are localized around defects. The band-gaps or the Bragg reflections 

occur at different frequencies inverse proportional to the central distance between 
two scatterers. If the band-gaps are not wide enough, their frequency ranges do 
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not overlap. Consequently, any wave is reflected completely from this periodic 
structure in the frequency range where all the band-gaps for the different 

periodical directions overlap. The key of the band-gap generation is the lack of 
purely real wave vector for certain modes of waves at certain frequencies. The 

wave amplitude may decay exponentially sustaining an evanescent mode, or can 

increase exponentially and a defect can terminate this exponential growth to 
sustain also an evanescent mode.   
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