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Critical Buckling Force Variation for Beams with 
Discontinuities 

This paper introduces a method to evaluate the critical buckling force 
for beams with geometrical discontinuities. First the shape of the 
healthy deformed beam due to axial forces is analyzed, in order to 
predict the distribution of the strain energy in the first buckling mode. 
Afterwards, the critical buckling forces for the similar beams with 
discontinuities positioned at different locations are determined by 
means of the finite element method (FEM), in order to find a similarity 
between the critical force drop and the damage position. It was finally 
demonstrated that it is a correlation between these two features; in 
fact, the force decrease is proportional with the energy locally stored in 
the beam.  
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1. Introduction  

The phenomenon by which a beam with the length greater than the cross-
sectional dimensions, subjected to compressive force directed along the axis, 
passes from its original stable equilibrium in a form of unstable equilibrium to 
overcome a certain amount of force called critical force, is named buckling. 

Under a force greater than the critical buckling force the beam loses its 
stability, the average fiber deforms and in the beam bending moments appear that 
cause further tension. The stress caused by the bending moments occurring in 
compressed fibers adds up with the tensions caused by axial force.  

Comparing the stress related to the critical buckling force with the elastic limit 
of the material of which the beam is made the buckling can be [2]: 

- elastic buckling, if the stress corresponding to the critical force is less than 
the elastic limit of the material; 

- plastic buckling, if the stress corresponding to the critical force is greater 
than the elastic limit of the material. 
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In this paper we want to study the variation of the critical force for the beams 
with discontinuities, when buckling occurs in the elastic range.   

The literature [1]-[5] presents the buckling in the constant section beams and 
the buckling in the composed section beams, determining some mathematical 
relationships for calculating the critical buckling force in the elastic range for 
different supporting cases. 

Next we analyze the case of the double clamped beam.  
The critical buckling force [3] determined from the equation of the deformed 

average fiber and from boundary conditions is given by: 
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Where: n is a positive integer, E the modulus of elasticity, minI the minimum 

moment of inertia of the cross section.  

 
 

Figure 1. The first three buckling modes shapes 
 
Formula (1) allows the calculation of the critical force for n buckling modes. 

The shape for the deformed average fiber of the first three buckling modes is 
shown in Figure 1. In reality the deformed average fiber of a double-clamped 
beam whose lateral movement is not prevented can only take the form shown in 
Figure 1.a., which is corresponding to n = 1, to the first solution of characteristic 
equation. 

In this case the formula for calculating the critical force becomes: 
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From the formula (1) and Figure 1.b and 1.c it is seen that the critical buckling 

force increases with 2n if we introduce (n-1) restrictions for the lateral 
displacement of the beam. 

Given that the subject of this work is a double-clamped beam, without 
intermediate supports only the first buckling mode will be studied, as seen in 
Figure 1.a. 

 

2. Deformations of the undamaged elastic beam subjected to 
buckling  

 
When the bending moments appear because of the buckling, the average 

fiber of the beam deforms as it can be seen in Figure 1.a. 
From [1] we have the mathematical relationship that describes the shape of 

the deformed average fiber: 
 

0M x
v= 1-cos 2

P l

  π  
  

 
(3) 

 
where: v is the transverse displacement , 0M - embedding at the clamped 

end, P -axial load, x -distance from the clamped end to the point in which the 
transversal displacement is v and  l -beam length. In Figure 2 the deformed 
average fiber is represented, according to the relation 3.  

  
Table 1. The transverse displacement 

   
x/l 0 0.25 0.5 0.75 1 

v 0 0M /P  02M /P  0M /P  0 
 

 

 
 
 
Figure 2. Shape of the deformed average fiber, for the first mode of buckling  
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From Table 1 and Figure 2 it is observed that the maximum bending occurs in 
the middle of the beam. 

The variation of the bending moment along the length of the beam is given by 
the second derivative of displacement that has the following mathematical 
expression: 
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(4) 

 
where M is the bending moment in a section placed at distance x. 

 
Table 2. Values of the bending moment depending on the moment in the 

clamped end, elastic modulus and the minimum moment of inertia of the cross 
section, at the distance x / l from that end. 

 

 
 
 

Figure 3. Dimensionless bending moment of the beam, subjected to buckling 
 
From Table 2 and Figure 3 results that the bending moment at both ends of 

the buckled beam is equal, in absolute value, with the bending moment in the 
middle of the beam, but with opposite sign.   

The beam deforms under the action of the bending moment and thus 
performs mechanical work. 

Considering that the deformations which occur as a result of the bending 
moments are in the elastic domain, the mechanical work is fully stored as elastic 
potential energy and released when the beam is fully unloaded.  From [3] we 
have dU  the elastic potential energy given by: 

 

x/l 0 0.25 0.5 0.75 1 

M 0 minM /EI  0 - 0 minM /EI  0 0 minM /EI  

x/l 

0
min

M
EI

M
 



 132 

2

0
2

l

d

M
U dx

EI
= ∫  

(4) 

 
It follows that the elastic potential energy is directly proportional to the 

square of the bending moment, i.e. the locally stored energy. 
 

 
 
 

Figure 4. Quadratic bending moment on the length of the beam 
 
3. Study of the critical buckling force variation for the damaged 

beams by numerical simulations 

 

3.1. The influence of damage width over of the critical buckling force 
 

A double-clamped beam with damages of 4 mm deep, widths between 
0,0001mm and 1 mm and located at the 235 mm and 500 mm respectively at one 
clamped end, was analyzed by finite element method using Solid Works software. 

An axial force of 30000 N is acting on the beam. The physical and mechanical 
characteristics of the beam with 1000x50x10 mm dimensions are the following:                             

   - yield point: 285,3×10 N /m  

   - modulus of elasticity: 211E=2×10 N /m   

   - thermal expansion coefficient: -5 o1,15×10 / C  

   - Poisson constant: 0.3 

   - density: 37850 kg /m  

The beam was meshed and we obtained 119 754 elements, 187 484 nodes, 
with a maximum size of an item being 3,18611 mm. A solid type mesh with curved 
base was used. The buckling coefficients presented in Table 3 and Table 4 were 
determined in simulations, as well as the buckling forces.  

x/l 

2M  
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Table 3. Critical buckling forces for beams with damages situated at 235 mm 
to one clamped end 

 

Width [mm] 0 1 0.1 0.01 0.001 
Buckling coefficient c 1.08974 1.08925 1.08933 1.08937 1.08938 

crP  [N] 32692.2 32677.5 32679.9 32681.1 32681.4 

crP∆  [N] 0 14.7 12.3 11.1 10.8 

crT  [° C] 53.29 53.28 53.28 53.28 53.28 
 
Table 4. Critical buckling forces for beams with damages situated at 500 mm 

to one clamped end 
 

Width (mm) 1 0.1 0.01 0.001 0.0001 
Buckling coefficient c 1.05009 1.05695 1.05856 1.05858 1.05858 

crP  [N] 31502.7 31708.5 31756.8 31757.4 31757.4 

crP∆  [N] 1189.5 983.7 935.4 934.8 934.8 

crT  [° C ] 52.26 52.44 52.48 52.48 52.48 
 

Analyzing the values presented in Tables 3 and 4 we observe that the critical 
buckling force variation through the damage width, in the studied interval, is less 
than 3% and increases with the widening of the discontinuity. 

 
3.2. The influence of discontinuity depth on critical buckling force  

 
Using the finite element method we analyze a beam with the same physical 

and mechanical characteristics, in the same supporting and meshing conditions as 
those set out in paragraph 3.1, considering that the beam has a discontinuity with 
δ  a depth between 1 mm and 8 mm situated at a distance of 500 mm from the 

clamped end. 
 
Table 5. Critical buckling forces determined through numerical simulations 

with discontinuities of depth between 1mm and 8mm 
 

δ  [mm] 1 2 3 4 
Buckling coefficient 1.0877 1.0818 1.0715 1.0541 

crP  [N] 32632.2 32455.8 32145 31623.6 
δ  (mm) 5 6 7 8 

Buckling coefficient 1.025 0.9781 0.8878 0.7136 

crP  [N] 30751.2 29343.21 26634.81 21409.59 
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Figure 5. Variation of the critical buckling force determined through 
numerical simulations based on damage depth 

 
Analyzing the values presented in Table 5 and plotted in Figure 6 we see that 

the critical buckling force decreases with the depth of the damage. The decline is 
accentuated when the depth of the damage is greater than half of the cross-
section. 

 
3.3. The influence of damage position over the critical buckling force  
 
The numerical simulation using the Solid Works program were made for the 

beam with features, support system, loading and mesh shown in paragraph 3.1 
with the amendment that a damage of 0.5 mm width and a depth of 4 mm was 
considered, located at a variable distance between 15 mm and 985 mm, from the 
clamped end. 

 
Table 6. Critical buckling forces for the damage located at a distance 

between 15 and 985 mm 
 

Dx [m] 0.015 0.025 0.03 0.05 0.078 0.1 0.156 0.235 

crP [N] 31639.5 31647.9 31661.1 31721.4 31861.8 31989 32347.8 32679.9 

Dx [m] 0.411 0.44 0.47 0.5 0.53 0.56 0.589 0.677 

crP [N] 31910.1 31753.5 31652.43 31623.6 31652.43 31753.5 31910.1 32481 

Dx [m] 0.765 0.844 0.9 0.922 0.95 0.97 0.975 0.985 

crP [N] 32679.9 32347.8 31989 31861.8 31721.4 31661.1 31647.9 31639.5 
 

δ  

crP [N] 



 135 

 
 

Figure 6. Critical buckling force variation with the damage position, for a 
damage of 0.5 mm width and a depth of 4 mm 

 
 
 

 
 
Figure 7. Variation of the difference between the critical buckling force of the 

undamaged beam and the critical force of the damaged beam, depending on the 
distance 

 
The results are given in Table 6 and are plotted in Figure 7. Analyzing the 

graphs in Figures 7, 2 and 3 it is seen that the critical buckling force of the 
damaged beam has the maximum value close to the critical buckling force of the 
undamaged beam when the position of discontinuity corresponds to the position of 
the deformed medium fiber's inflection points i.e. corresponding to the position of 
the beam section where the bending moment is zero. 

We denote by P∆ the difference between the critical force for the undamaged 
beam and the critical force for the damaged beam. Comparing the graph from 

crP∆ [N] 

Dx [m] 

Dx [mm] 

crP [N] 



 136 

figure 7 with that from figure 4 we see that the difference between the critical 
force for the undamaged beam and the critical force for the damaged beam varies 
along the beam, as well as the square of bending moment, having minimum and 
maximum points located on the same sections. Based on this observation and the 
expression of potential energy of deformation (4) we conclude that the difference 
between the two critical buckling forces, for the undamaged beam and for the 
damaged beam respectively,  varies directly proportional to the potential energy of 
deformation, on the entire length of the beam. 

4. Conclusion 

This paper introduces a method to evaluate the critical buckling force for 
beams with geometrical discontinuities. The analysis was made on a prismatic 
beam with two clamped ends.  

The results obtained by numerical simulations using Solid Works program 
highlight the following: 

- the critical buckling force is significantly influenced by the depth and position 
of damage on the beam and is less influenced by variation of the damage width; 

- the existence of a connection between the critical buckling force of a 
damaged beam, which is the square of the bending moment and consequently the 
potential energy stored in the beam in the affected region. 
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