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Veturia Chiroiu, Dan Dumitriu 

An Extension of the Burridge-Knopoff Model for Fric-
tion 

The paper presents an extension of the Burridge-Knopoff (BK) model 
with an additional kinetic equation for the friction force in order to 
reproduce the both the velocity weakening friction between the tire and 
the road and the increase of static friction with time when the car is not 
moving. The BK was initially proposed to investigate statistical 
properties of earthquakes. In this model the sliding force decreases 
monotonously from a reference value, and the static friction can have 
negative values to prevent back sliding. The stability of the system is 
affected and the sliding regime at small sliding velocities and large 
stiffness cannot be reproduced. The extended model BK assures the 
stability of the diagram sliding-stationary sliding, and correctly 
reproduces the stability diagram for sliding friction under various 
loading conditions.  
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1. Introduction  

The tires on the road can perform stick-slip events when the brakes are 
pushed so hard that they lock up the wheels. In this case a pure stick in the brake-
wheels system is put into evidence. The tires slide on the road instead of rolling. In 
other words, we have sticking to the road. In this case, the stick state corresponds 
to tires normally rolling, and the slip state corresponds to a sudden slip on the 
road, which can induce wear of the tires, i.e. loss of material and irreversible 
deformations. The behavior which defines stick-slip is  intermittent being done to 
an intermittent braking. The figures seen on the roads, i.e. the regularly spaced 
skid marks are not directly related to stick-slip, but rather are the consequence of 
the use of the break.  

The stick-slip phenomenon occurs on different length scales. Even when the 
motion of the center of mass seems smooth, it is possible local stick-slips to occur 
at the interface between the sliding solid and its substrate. These local events may 
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be understood by studying the elastic waves emitted from the sliding interface [1-
5]. From the microscopically point of view, it is possible to have contacts in a 
sticking state and some in a sliding state. Modern theories of friction regard sliding 
as a sequence of slips between sticking asperity zones, which reverberate across 
the contact surface as shear stresses build up and dissipate locally. The way this 
happens is said to be similar to the sliding of geological fault lines, which is 
manifest as a discrete sequence of earthquakes. 

The Burridge-Knopoff (BK) model, or spring-block model, is a description of 
the friction at the mesoscopic level between two plates A and B elastically coupled 
together. This model was advanced in the context of seismology by Burridge and 
Knopoff in 1967. The tectonic plate B is divided in virtual blocks connected each to 
other by elastic interactions. The load is performed via elastic interactions with a 

plate A which moves with velocity 0V  (Figure 1). The motion equation is given by 

0 0 1 1 1( ) ( 2 )i i i i i imx k V t x k x x x+ −= − + − + − ϕɺɺ ,                            (1) 

where ix  is the departure of block i  from its equilibrium position, 0k  the stiffness 

of the connection with the driving plate, 1k  the stiffness of the interactions 

between blocks and m  the mass of each block, and iϕ  is the local friction force 

acting on the block i . In the BK model, the sliding friction force is a lubricated 

creep-slip friction law with viscous properties at both the low and high velocity 
limits (see the dashed line in Figure 2).  

The friction threshold is not equal for all blocks. The system behaves 
differently from one block to another. The BK friction law shows a threshold (red 
vertical line) where the plate starts to slip. 

The BK model can be associated to the stick-slip law of Carlson and Langer 
[6] (see solid line in Figure 2)   
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Figure 1. Burridge-Knopoff model 
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Figure 2. The stick-slip friction law [6] 

 
In this paper, starting from BK model, we build and study an extension of this 

model with an additional kinetic equation for the friction force in order to repro-
duce the both the velocity weakening friction between the tire and the road and 
the increase of static friction with time when the car is not moving. The frictional 
events introduce nonlinearities in the stiffness and damping characteristics of con-
tact interfaces. 

The friction plays a dual role by transmitting energy from one surface to the 
other and by dissipating energy of relative motion [7-9]. Experiments show that in 
most cases of dry friction the sliding stabilizes for either sufficiently large velocities 
or sufficiently large stiffness of the system.  

These properties are explained in details in the books [10, 11]. The BK model 
is related to the nonlinear Klein-Gordon equation which admits soliton-like solu-
tions [12]. Cartwright et al. [13] studied the BK model of earthquake faults with 
viscous friction and show that the model admits the van der Pol- FitzHugh- Na-
gumo equation for excitable media with elastic coupling. In both situations, the 
solutions of the BK problem are composed by a number of propagating pulses with 
a proper choice of the initial conditions.  

 
2. Modified BK model  

Equation (1) can be written in a continuum language [13]  

2
, ( )xxc vtχ = χ − χ − − γφɺɺ ,                                  (3) 

where ( , )x tχ  is the local time-dependent longitudinal deformation of the surface A 

with respect to the static reference of  the plate B, and γ  is the magnitude of the 

friction, c  is the longitudinal speed of sound and v  is the velocity of the plate A or 

slip rate.  
The friction force φ is given by the BK lubricated creep-slip friction law  

31

3
φ = χ − χɺ ɺ .                                              (4) 
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From (3) we can obtain the local velocity ψ = χɺ  of the interface between the 

plates A and B. So, (3) can be written as two differential equations of first-order  

( )ψ = γ η − φɺ ,   2
,

1
( )xxv cη = − ψ − − ψ

γ
ɺ .                                 (5) 

The BK model (1) and (2) is a simplification of real properties of static and ki-
netic friction. This equation does not reproduce the correct stability diagram for 
sliding-stationary sliding. It is important to say that the system is always unstable 
[14]. This is why we introduce here a modified version of BK model including the 
state dependent friction term. The new model describes a velocity weakening of 
friction between moving car and an increase of static friction during stick periods. 
It provides a stable diagram for the transition from smooth sliding to stick-slip be-
havior as observed experimentally.  

This new law includes a viscous term ixςɺ and it is represented as 

0 0 1 1 1( ) ( 2 )i i i i i i imx k V t x k x x x x+ −= − + − + − ς − ϕ τɺɺ ɺ .                     (6) 

In a continuum language, (6) becomes 

2
, ( )xxc vtχ = χ − χ − − δχ − γφɺɺ ɺ ,                               (7) 

where δ  is the is the magnitude of the friction rate.  

Equation (7) can be written as two differential equations of first-order  

( )ψ = γ η − φɺ ,   2
,

1
( )xxv cη = − ψ − − ψ − δγη + δγφ

γ
ɺ .                       (8) 

The friction force φ  in (7) and (8) is given by the BK lubricated creep-slip fric-

tion law (4). Different initial conditions can be attached in the study of stability of 
the problem (8) and (4). 

3. Stability of the model  

But the problem is not so simple. The large full band-gap depends not only on 
the number of scatterers but on the material the scatterers are made and on their 
geometry. The geometry can be diverse: spheres, hollow spheres, cylindrical 
shells, rods. The stability of solutions for (8) and (4) for initial and boundary 

conditions (0) 0.1ψ = , (0) 0.1η = and 0| 1.5x=ψ = − , is investigated with respect to 

v . The system has uniformly propagating solutions for v  approaching the singular 

limit v c= . In this limit the pulses become discontinuous, so that (8) becomes ill-

defined. Equation (8) has bounded solutions only if 2 2v c< . In this case the 

solutions depend slightly on v and the period of oscillations decreases with the 
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increase of v. Since our estimates predict that v  becomes smaller than c and 

approaches zero as the number of pulses in the system is increased, there should 
be a maximum number of pulses allowed in the solutions.  A similar result was 
obtained by Cartwright et al. [13].  

The parameters have the values 3γ = , 0.2δ =  and 1c = . Also, 0 1 0.2k k= = . 

In Figure 3a, a two pulse solution propagating to the right with the velocity 4.88 is 
presented. Figure 3b presents the phase portrait of this solution. The red line is the 
nulcline line, and the blue point shows the position of the unstable fixed point. The 
nullcline lines are sometimes called zero-growth isoclines. The fixed points of the 
system are located where all of the nullcline lines intersect.  

Figure 4a shows a four pulse solution propagating to the left with the velocity 
2.48 and thus closer to the sound velocity c, as expected from the estimates.  

Figure 4b presents the phase portrait of this solution. Figure 5a shows an 
eleven pulse solution propagating to the left with the velocity 1.08 very closer to c. 
Figure 5b presents the phase portrait of this solution.  

 
Figure 3. a) Two pulse solution; b) Phase portrait 

 

Equation (6) contains a viscous damping term ixςɺ . This term avoids the local 

oscillations in the system, being a benefit to the stability. When applying viscous 
damping it is necessary to avoid over-damping, which occurs when the root of the 

characteristic equation has two real solutions. That gives 1mkς ≤ . In our study 

we use 10.1mkς = . 
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Figure 4. a) Four pulse solution; b) Phase portrait. 

 

 
Figure 5. a) Eleven pulse solution; b) Phase portrait. 

 

The stability diagram in the plane ( 1log k - logv ) is presented in Figure 6. The 

line separates the regions of sliding and stick-slip motion.  
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Figure 6. Stability diagram 

4. Conclusion  

The paper discusses the way of controlling the mechanical properties of sonic 
composites. These properties are referring to the full band-gaps generation, where 
the sound is not allowed to propagate due to complete reflections. The Bloch's 
theorem which is used to build the composite in the repetitive way represents the 
main concept for the architecture of the scatterers in order to obtain special 
features in their response to external waves. The band-gaps occur at different 
frequencies inverse proportional to the central distance between two scaterers. 
The complete reflection on the boundaries of scatterers is due to the full band-gap 
property itself, independent of the incident angle.  

The technique for transforming the conventional foams into auxetic foams is 
discussed in this paper by exploiting the property of the governing equations to be 
written in a covariant form such that the metric is only involved in the material 
parameters. The geometric transformations lead to material properties that are, if 
not impossible to obtain, at least challenging for manufacture of new materials 
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