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Studying the Mechanical Properties of Graphynes 
Using Molecular Dynamics Simulations  

Molecular dynamics simulations are used to study the mechanical 
properties of graphynes. To study the effect of atomic structure and 
graphyne size on the Young’s and bulk modulus, armchair and zigzag 
nanosheets with different side lengths and aspect ratios are 
considered. It is shown than the fracture of armchair graphynes occurs 
at larger strains. Comparing Young’s modulus of armchair and zigzag 
nanosheets with a constant aspect ratio, it is observed that the value of 
side length have not significant effect on the Young’s modulus of 
graphynes. Besides, the schematic of graphynes axial and biaxial 
loading at different strains is represented.it is shown that fracture 
propagates in a linear pattern  

Keywords: Graphynes; Mechanical properties; Molecular dynamics 
simulations. 

1. Introduction. 

Having the various hybridized states including sp, sp2, and sp3, in addition to 
the ability to bind with nearly all elements have caused to existing numerous 
carbon allotropes such as fullerenes [1], grapheme [2], nanoring [3] and nanotube 
[4]. Besides, the C C= = =  bonds of grapheme sheets can be replaces by 
acetylene linkages, C C− ≡ −  , to form some exotic allotropes which consist of 
mixed sp and sp2 states of carbon atoms. This replacements lead to some 
allotropes which poses quite different optical and electronic properties from 
common carbon allotropes [5-7]. To this end, recently some carbon allotropes 
have successfully synthesized [8-9] or predicted [10-11]. 
Replacing one third of C C= = =  bonds of graphene by acetylene linkages, a 
stable structure, named as graphyne, is obtained [12]. The electronic, optical and 
mechanical properties of graphynes have been studied by researchers [13-15]. 
Kang et al. [16] investigated the elastic, electronic, and optical proper ties of the 
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2D graphyne sheet. Using generalized gradient approximation and hybrid 
functional, they computed band structure of graphyne. They found that the value 
of band gap obtained by using the hybrid functional is one half of the values 
obtained by using the other approach. Moreover, strong anisotropic optical 
properties were observed.  Zhou et al. [17] used density functional theory and 
generalized gradient approximation to study the electronic structure of graphyne 
and its boron nitride analog (labeled as BN-yne). They found that both graphyne 
and BN-yne are direct bandgap semiconductors.  

Peng et al. [18] used first-principles calculations based on the Density 
Functional Theory to study the mechanical properties of graphynes. They found 
Young’s modulus and Poisson ratio of graphynes as 162 N m and 0.429, 
respectively. They also formulated the elastic response of graphynes by a 
continuum description. Zhang et al. [19] employed molecular dynamics simulations 
to study the thermal conductivity (TC) of four different graphynes. They found that 
the presence of acetylenic linkages leads to significant reduction in the TC. They 
also observed that the TC of graphynes is strain and temperature dependent. 
Besides, the graphyne related structures such as graphyne nanotubes [20], a-
graphyne-like carbon nanotubes [21], graphyne sheet and its BN analog [17] have 
been the subject of different studies.  Coluci et al [22] used tight-binding and ab 
initio density functional methods to study the electronic properties of graphyne 
nanotubes. They studied three graphyne nanotube families, two of which showed 
metallic behavior for armchair nanotubes and either metallic or semiconducting 
behavior for zigzag ones. The third one was predicted to have diameter- and 
chirality-independent band gap. Enyashin et al. [23] used tight-binding band 
theory to study the BN and BCN nanotubes with α-graphyne-like wall structures. 
They predicted that similar to ordinary BCN nanotubes, α-graphyne-like BCN form 
low-density loosely-bound films and molecular solids. 

The elastic properties of graphyne sheets under the tensile in-plane loading 
are studied here by using molecular dynamics (MD) simulations. The effects of side 
length and aspect ratio on Young’s modulus of graphynes are investigated. 
Besides, Young’s moduli of armchair and zigzag graphynes are compared. The bulk 
moduli of graphynes with different geometries are obtained by simulating the 
sheets under two-directional tensile in-plane loads. 

2. Methodology  

All of the MD simulations are used by using LAMMPS MD code [24, 25]. The 
interactions between carbon atoms of graphynes are modeled by adaptive 
intermolecular reactive empirical bond-order (AIREBO) potential function [26]. The 
simulations are considered under the NVT (constant number of molecules, 
constant volume, and constant temperature) condition. To integrate the equations 
of motions, the velocity Verlet [27] and Nose-Hoover thermostat [28] algorithms 
are used. The time step of 1 fs is used. 
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3. Simulation results and discussion 

As it can be seen in Fig. 1. three types of C–C bonds are observed in 
graphenes which are C(sp2)-C(sp2) for the central aromatic rings, C(sp2)-C(sp) for 
the bonds between aromatic rings and triple bonds and C(sp)-C(sp) for triple 
bonds. The lengths of these bonds are considered as 1.49 Å, 1.48 Å and 1.19 Å 
respectively [29]. 

 

 
Figure 1. Schematic of different bond types in the structure of graphyne. 

The armchair and zigzag graphyne sheets are shown in the Fig. 2.a. and b are 
the side length and width of the graphyne sheet, respectively. The armchair and 
zigzag graphyene sheets with different side lengths and aspect ratios are selected 
to study the effects of atomic structure, side length and aspect ratio on the 
mechanical behavior of the graphynes. The tensile loads are applied on the 
horizontal edges of the sheets to compute Young’s modulus. Moreover, the biaxial 
loading condition is used to obtain Bulk modulus.  

3.1. Young’s Modulus 

Due to ambiguity of the thickness of nanostructures [30-33], the in-plane 
Young modulus is used here which can be defined as [34]: 
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in which SE  is the strain energy of the system, 0A  initial unit cell area and strain. 

The strain energies of two samples armchair and zigzag graphyne sheets are 
represented in Figs. 3 and 4 versus strain. 
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(a) (b) 

Figure 2. Schematic of the (a) armchair and (b) zigzag graphyne sheets. 
 
 
 

 
 

Figure 3. Strain energy of a 40×80 Å2 armchair graphyne sheet versus strain. 
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Figure 4. Strain energy of a 40×80 Å2 zigzag graphyne sheet versus strain. 
 

As it can be seen in these figures, the first drop in the strain energy-strain 
graphs can be considered as the fracture initiation. Comparing Figs.3 and 4, it can 
be seen that the fracture initiation of armchair graphyne sheet occurs at 32% 
strain, while that of armchair graphyne sheet happens at 23% strain. So, one can 
conclude that armchair graphyne sheets tolerate larger strains than the zigzag 
graphyen sheets with the same geometries. Due to releasing energy releasing 
caused by bond breakage at this step, a considerable temperature increase is 
observed at this step (Figs. 5 and 6). The other picks which can clearly be seen in 
Fig. 6 relates to other bond breakages. 

 

 

Figure 5. Temperature of a 40×80 Å2 armchair graphyne sheet versus strain. 
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Figure 6. Temperature of a 40×80 Å2 zigzag graphyne sheet versus strain 

To study the effect of aspect ratio on the mechanical properties of graphyne 

sheets, armchair and zigzag graphynes with the side length of 40a Å=  and 
different aspect ratio  b/a, form 0.5 to 3, are considered. The computed value of 
in-plane Young’s modulus is represented in Fig. 7. As it can be seen, increasing 
aspect ratio results in decreasing Young’s modulus. However, for aspect ratios 
larger than 1, the graphs take a flat form for both armchair and zigzag graphynes. 
So, it can be said that the in-plane Young’s modulus for graphenes with sufficiently 
large aspect ratios can be considered to be independent of side width b . Besides, 
although the modulus of armchair graphyne at the aspect ratio of 0.5 is about 
18% larger than that of zigzag sheets, for the aspect ratios larger than 1.5, the 
graphs converges. So, it can be concluded that for large graphyne sheets, the 
armchair and zigzag nanosheets have approximately the same in-plane Young’s 
modulus. 

 

Figure 7. In-plane Young’s modulus of armchair and zigzag graphyne sheets with 
the side length of 40 Å versus graphyne aspect ratio 
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The effect of graphyne side length on Young’s modulus is depicted in Fig. 8. 
The aspect ratio of graphynes is considered as 1.5. As it can be seen, for a 
constant aspect ratio, the Young’s modulus is approximately independent of side 
length. Comparing Figs. 7 and 8, it can be concluded that the value of 1.5 can be 
considered as an aspect ratio after which the in-plane Young’s modulus is almost 
constant. 

 

Figure 8. In-plane Young’s modulus of armchair and zigzag graphyne sheets with 
the aspect ratio of 1.5 versus graphyne side length 

 
The schematic of a 40×80 Å2 armchair graphyne sheet is given in Fig. 9. As it 

can be seen until 31.79%, the armchair graphyne sheet experiences no bond 
breakage. At this step a bond breakage happens and propagates horizontally 
parallel to side length. The final figure of graphyne after fracture can be seen in 
this figure. 

        
5%        15% 
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Figure 9. Schematic of a 40×80 Å2 armchair graphyne sheet at different strains. 

 

3.2. Bulk Modulus 

The following equation can be used to obtain the bulk modulus: 
2
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where A is the instant area of unit cell. Square graphynes with different side 
lengths are considered here. As it was previously the graphynes are considered to 
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be under the biaxial loading to obtain the bulk modulus. The strain energy of a 90 
× 90 Å2 graphyne under biaxial loading has been plotted versus instant area in Fig. 
10. As for uniaxial loading, drops relate to bond breaking and it can be seen that 
the breakage happens in several steps. 
 

 

Figure 10. Strain energy of a 90×90 Å2 zigzag graphyne sheet under biaxial 
loading versus unit cell area 

 
The bulk moduli of graphyne sheets with different side lengths are given in 

Fig. 11. As it can be seen, similar to the behavior observed for Young’s modulus, 
increasing side length result in decreasing the bulk modulus. However, t bulk 
modulus is more sensitive to the side length than Young’s modulus. The initial slop 
of curve is higher. However, this slope decreases for larger graphynes. It can be 
predicted that continuing this graph results in a flat part after which increasing side 
length does not have a significant effect on the bulk modulus. 

 

Figure 11. Bulk modulus of graphyne sheets versus side length 
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The profile of graphyne under biaxial loading at different strains is shown in 
Fig. 12. As it can be seen the bond breaking starts at the corners of the sheet. 
Then it propagates in a straight line parallel. As it can be seen, due to the 
boundary effects, the final fracture occurs near the boundaries. 
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11.86%        11.88% 

Figure 12. Schematic of a 70×70 Å2 graphyne sheet at different strains. 

4. Conclusions 

The mechanical properties of graphynes were studied using molecular 
dynamics equations. The effect of different parameters including atomic structure, 
side length and aspect ratio on Young’s modulus of graphynes were investigated. 
It was shown that for small graphynes, Young’s modulus of armchair graphynes is 
larger than that of zigzag graphynes. However, this dependency vanishes for larger 
graphynes. Besides, although for a constant side length, at smaller side length the 
Young’s modulus decreases with aspect ratio significantly, this dependency reduces 
with increasing the aspect ratio. A linear patter was found in the fracture 
propagation of graphynes under both uniaxial and biaxial loadings. Finally the 
effect of graphyne side length on the bulk modulus was studied. It was seen that 
bulk modulus is more sensitive to side length than Youn’s modulus. 
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