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A Continuous Approach of the Contact Dynamics  

Ther paper is devoted to the analysis of a sonic composite under 
dynamic contact with friction loading, by using LISA (local interaction 
simulation approach). LISA is an an efficient tool for the numerical 
simulation of the acoustic wave propagation in heterogeneous material 
specimens, in particular those with sharp boundaries between different 
materials, like in sonic composites. Boundary conditions are introduced 
to contain contact interfaces with frictional slips. 
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1. Introduction 

The sonic composites subjected to dynamic contact with friction loading is a 

multiscale problem because of the particular structure of the material and the 
multiple frictional contacts. The dynamics of contact depends on many properties 

of contacting bodies such as material, geometry and velocity.  

The continuous approach of the contact dynamics has several advantages over 
the discrete formulation, because it does not require differentiating between im-

pact and contact situations and permits the use of solution methods employed for 
non-impact dynamics problems [1]. 

Sonic composites are artificial structures consisting of a periodic array of acous-

tic scatterers embedded in a homogeneous matrix material, with a usually large 
impedance mismatch between the two materials. They exhibit strong sound at-

tenuation at selective frequency bands due to the interference of multiply reflected 
waves [2].  

The behavior of the sonic composites under dynamic contact with friction 

loading is analysed in this paper by using LISA (local interaction simulation 
approach). LISA is based on the Finite Difference Equations (FDE) with sufficiently 

small spatial and temporal discretization steps in order to obtain numerical stability 
of the algorithm and to reproduce reasonably the shape of the scatterers. 

The sonic plate is composed of an array of acoustic scatterers which are piezo-
ceramic hollow spheres embedded in an epoxy matrix [3]. The scatterers are made 
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from functionally graded materials with radial polarization, which support the 
Reddy and cosine laws [4-6]. The proposed approach is based on the theory of 

piezoelectrics. For a single sphere made from a functionally graded material, the 
free vibration problem was analyzed in [7, 8].  

We suppose that the interfaces in the composite simultaneously undergo the 

frictional slip and vibro mechanisms. The indentation δ  is the principal factor in 
defining the contact force [9] 

( , )cF f= δ δ& .                                           (1) 

An explicit form of (1) is 

cF k b= δ + δ& ,                                          (2) 

with k  and b  constants depending on the material and geometry [1]. This 
model has some limitations. Firstly, the contact force at the start of the impact is 
discontinuous, due to the damping term. When the contacting bodies are 

separating when the indentation is tending to zero, their relative velocity tends to 

be negative. As a result, a negative force holding the objects together is present.  
Another  form of (1) is the Hertz model 

n
cF k= δ ,                                              (3) 

with k  and n  constants depending on the material and geometry. In this model, 
1e = , because the dissipation energy is not present.  However, this model can be 

used only for low impact speeds and hard materials. 

Another version for (1) is reported in [10] 

n p q
cF k b= δ + δ δ& ,                                        (4) 

where , ,n p q  are constants, coefficient k  depends on the material and the 

geometric properties of the bodies in contact, and b is defined with respect to the 
coefficient of restitution 0 1e≤ ≤ . These coefficients are calculated based on the 

viscoelastic theory. For example, 3/ 2n =  in the case of two spheres in central 

impact and k is defined in terms of Poisson’s ratios, Young’s moduli and the radii of 
the two spheres. The standard values are p n=  and 1q = . In the case of central 

impact between two bodies, the coefficient of restitution is 01 2 / 3e b k= − δ&  [1]. 

The friction tF  occurring at the contact point during sticking can be defined as 

[11] 

t t tF k= δ ,                                                 (5) 
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where tδ  is the tangential component of displacement at the contact point and tk  

is the tangential stiffness. As before, the indentation tδ depends on the the length 

scale R .  

In the following we suppose that the contact and friction forces at the interface 
between the scatterers and matrix are given by (4) and (5), respectively. 

  

2. Formulation of the problem 

The sonic composite consists of an array of acoustic scatterers embedded in an 
epoxy matrix. The acoustic scatterers are hollow spheres made from piezoelectric 

ceramic, while the matrix is made from the epoxy resin (Fig. 1). the transversal 

view of a scatterer is presented in Fig.2. The sonic plate consists of 72 scatterers 

of diameter a . The length of the plate is l , its width is d , while the diameter of 

the hollow sphere is a  and its thickness is e a> .  

A sonic composite exhibits the full band-gaps, where the sound is not allowed 
to propagate due to complete reflections. The band-gaps or the well-known Bragg 

reflections occur at different frequencies inverse proportional to the central dis-

tance between two scatterers. If the band-gaps are not wide enough, their fre-
quency ranges do not overlap. These band-gaps can overlap due to reflections on 

the surface of thick scatterers, as well as due to wave propagation inside them 
[12, 13].  

 
Figure 1. Sketch of the sonic plate [3] 

      
Consider now two piezoceramic hollow spheres with the ratio of the inner and 

outer radii 0ξ . Two laws represent the functionally graded property of the mate-

rial. The first one is the Reddy law [4-6] given by                

(1 )p zM M Mλ λ= µ + − µ ,                                           (6) 

where µ  is the gradient index [8], pM and zM are material constants of two ma-

terials, namely PZT-4 and ZnO. The case 0µ =  corresponds to a homogeneous 
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PZT-4 hollow sphere and µ → ∞ , to a homogeneous ZnO hollow sphere. The sec-

ond law is expressed as 

cos (1 cos )p zM M M= µ + − µ .                                    (7) 

 
Figure 2. Transversal view of a scatterer. 

 
The constitutive equations for the piezoelectric hollow sphere are given by [3] 

  11 12 13 31rr rr C S C S C S f rθθ θθ θθ ϕϕΣ = σ = + + + φ ,  

12 11 13 31 ,rr rr C S C S C S f rϕϕ ϕϕ θθ ϕϕΣ = σ = + + + φ ,  

13 13 33 33 ,rr rr rr rr C S C S C S f rθθ ϕϕΣ = σ = + + + φ , 

44 15 ,2r r rr C S fθ θ θ θΣ = σ = + φ , 44 15 ,2 cscr rr C S fϕ ϕ ϕσ = + θφ ,             (8) 

662r C Sθϕ θϕ θϕΣ = σ = ,  15 11 ,2 rrD C Sθ θ θ θΛ = = − ζ φ ,      

15 11 ,2 cscrrD f Sϕ ϕ ϕ ϕΛ = = − ζ θφ ,  31 31 33 33 ,r r rr rrD f S f S f S rθθ ϕϕΛ = = + + − ζ φ ,                           

where ijσ  is the stress tensor, φ  is the electric potential, iD  is the electric dis-

placement vector, ijC are the elastic constants, ijf  are the piezoelectric constants 

ijf , ijζ  are the dielectric constants, and , ,i r= θ ϕ .  The elastic, piezoelectric and 

dielectric constants are arbitrary functions of the radial coordinate r . On denoting 
the components of the strain tensor and displacement vector by ijε and iu , 

, ,i r= θ ϕ , respectively, the quantities ijS  related to the strain tensor ijε are de-

fined as [3] 

,rr rr r rS r ru= ε = ,   , rS r u uθθ θθ θ θ= ε = + , 

              ,csc cotrS r u u uϕϕ ϕϕ ϕ ϕ θ= ε = θ + + θ , , ,2 2r r r rS r u ru uθ θ θ θ θ= ε = + − ,    (9) 
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, ,2 2 cscr r r rS r u ru uϕ ϕ ϕ ϕ ϕ= ε = θ + − ,   , ,2 2 csc cotS r u u uθϕ θϕ θ ϕ ϕ θ ϕ= ε = θ + − θ . 

Denoting the density of the material byρ , which is assumed to be an arbitrary 
function of r , the equations of motion become 

2
, , ,csc 2 ( )cotr r rr r uθ ϕθ ϕ θθ θ θ θθ ϕϕ θΣ + θΣ + Σ + Σ + Σ − Σ θ = ρ && , 

2
, , ,csc 2 2 cotr r rr r uϕ ϕϕ ϕ θϕ θ ϕ θϕ ϕΣ + θΣ + Σ + Σ + Σ θ = ρ && ,                      (10) 

2
, , ,csc cotrr r r r rr r rr r uϕ ϕ θ θ θθ ϕϕ θΣ + θΣ + Σ + Σ − Σ − Σ + Σ θ = ρ && . 

The charge equation of electrostatics is given by 

, , ,csc ( sin ) csc 0r r rr θ θ ϕ ϕΛ + Λ + θ Λ θ + θΛ = .                      (11) 

The boundary conditions are given for the radial and tangential stresses at the 
interface between the scatterer and the matrix  

( )r cF tσ = , ( )t tF tσ = .                                     (12) 

3. Results  

Consider a plate with the length 18cml =  and width 11cmd = , while the 

diameter of the hollow sphere and its thickness are 10.5mma = and 12mme = , 

respectively, and 0 0.3ξ = . The numerical results are carried out for the following:  

for PZT-4:  
10 2

11 13.9 10 N/mC = × ,  10 2
12 7.8 10 N/mC = × , 

10 2
13 7.4 10 N/mC = × , 10 2

33 11.5 10 N/mC = × ,  10 2
44 2.56 10 N/mC = × , 

2
15 12.7C/mf = , 2

31 5.2C/mf = − ,  
2

33 15.1C/mf = , 
11

11 650 10 F/m−ζ = × , 
11

33 560 10 F/m−ζ = × , 
37500kg/mρ = , 

for ZnO: 
10 2

11 20.97 10 N/mC = × ,   
10 2

12 12.11 10 N/mC = × ,   

10 2
13 10.51 10 N/mC = × , 

10 2
33 21.09 10 N/mC = × ,  

10 2
44 4.25 10 N/mC = × , 

2
15 0.59C/mf = − , 

2
31 0.61C/mf = − , 

2
33 1.14C/mf = ,  

11
11 7.38 10 F/m−ζ = × , 

11
33 7.83 10 F/m−ζ = × , 

35676kg/mρ = , 

and for epoxy-resin: 
eλ = 42.31

9 210 N/m× , 
eµ = 3.76

9 210 N/m× , 

eA = 2.8 9 210 N/m× , eB =  9.7 9 210 N/m× , 
eC =  − 5.7

9 210 N/m× , and 
eρ = 1170 3kg/m .  

The motion equations (10) and (11) yield two independent classes of free vibra-

tions. The first class does not involve the piezoelectric or dielectric parameters, 

being identical to the one for the corresponding spherically isotropic elastic sphere. 
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The second class depends on the piezoelectric or dielectric parameters. With the 
increase of the gradient index µ , the natural frequencies increase for all modes 

and functionally graded laws, the variation being more significant when 10µ ≤ .  

 

Figure 3.  Sound transmission through the sonic composite for the Reddy 
and cosine graded laws. 

 

 
Figure 4. The maximum contact pressure at the interface. 
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For µ → ∞  the variation of natural frequencies is not significant with respect to 

those of 10µ = . It is seen that for a piezoceramic hollow sphere, the piezoelectric 

effect consists of increasing the values for the natural frequencies in both classes 

of vibrations. If 2 /r aξ =  increases the natural frequencies increase for the first 

class of vibrations and decrease for the second class.  
Fig. 3 shows the wave attenuation variation with respect to frequency for 

Reddy (red line) and cosine (blue line) laws, in the presence of the boundary con-

ditions (12). The green line represents the Reddy law without absorbing boundary 
conditions (12). 

The maximum contact pressure at the interface is presented in Fig.4 for Reddy 
(red line) and cosine (black line) laws. 

4. Conclusion 

Ther paper analyses a sonic composite under dynamic contact with friction 
loading, by using LISA. The identification of the boundary conditions to take into 

consideration the deformations in normal and tangential directions is important  
because the micro-vibrations and frictional slip at the interfaces between the 

scatterers and the matrix are real observations put into evidence by the 

experience.  
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