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Silviu Drăghici, Cornelia Anghel Drugărin, Cristian Chioncel 

Optimal Encoding of Data in Data Transmission Channels 

This paper aims to present the methods of achieving an optimal encoding in 
the data communication channels. After a short description of the 
communication channel and of the data communication channel types, follow 
briefly a few notions of the data channel enthropy, information, 
transinformation, with their properties, definitions and mathematical relations 
connecting them. Chapter 2 presents the concept of optimal code, following a 
detailed description (using two suggestive examples) of the two main 
methods used to obtain an optimal code: Shannon-Fano and Huffman.  

Keywords: optimal code, communication channel, entropy, informa-
tion, transition functions. 

1. Introduction  

A communication channel generally presents the following block structure: 

 
 

Figure 1. A communication channel 
 
 As noticed, every communication channel attaches errors, i.e. noises, charac-
terized by the relation signal/noise (denoted S/N or SNR). The channel decoder will 
perform their notification and correction.  

In a broader sense, a channel can be defined as any device that sends 
information from a transmitter (source) to a receiver. There is a variety of 
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communication channels. But this diversity is mathematically described by a 
probabilistic model that includes the following sets and variables:  
1. A set of signals applied at the channel input, usually represented with X:  

{ }mxxxX ,...,, 21= ; 

2. A set of signals from the channel output, usually represented with Y:  

{ }nyyyY ,...,, 21= ; 

3. A set of transition probabilities p(yj/xi), represented as follows:  

( ){ },/,, XYpYX where ( )ij xyp /  represents 

the probability of the output variable yj  conditioned by the input variable xi , where 

mi ,1= , and nj ,1= ;  p (Y / X) is a transition matrix of m x n size, structured as 

follows:  

p (Y / X) = 
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Also, we notice that any form of energy can be used in transmitting information.  
A transmission channel mandatorily contains the source and the source coder.  
It is often likely to transmit correctly the information through an interference 
(noise) channel, depending on the selected encoding.  

We notice that according to the characteristic of the sets X and Y and of the 
transition matrix p (Y / X), the communication channels can be classified as 
follows:  
a) a continuous communication channel: if the set of X and Y signals are 
continuous; 
b) discrete communication channel: if the set of X and Y signals are discrete ; 
c) symmetric communication channel: if the columns as well as the lines of the 
transition matrix p (Y / X) can be divided in subsets so that every column of the 
matrix should represent a circular permutation of another column in the transition 
matrix; the same goes for the transition matrix lines. 

The most simple and suggestive example is that of a symmetric binary 
channel, where the sets X, Y and the transition matrix are represented as:   

{ }21 , xxX = , { }21 , yyY = ; 

pxypxyp −== 1)/()/( 2211         (2) 

pxypxyp == )/()/( 2112 ,  

where p represents the probability for a symbol to be transmitted erroneously; p is 
a probability that depends on the physical parameters of the data transmission 
channel.  

The transition matrix will have the following representation:  
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p (Y / X) = 
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      (3)  

obviously, at the symmetric channel, the sum of the transition probabilities is 1 
both for lines and columns!  

Depending on the structure of the transition matrix p (Y / X) the data 
transmission channels can also be:  

Deterministic (in terms of the set X, i.e. the input), if each line of the 
transition matrix contains one element with probability 1, the remaining elements 
from the lines being nul (with zero probability);  

Quiet/noiseless (in terms of the set Y, i.e. the receiver), if each column of 
the transition matrix contains one element with non-zero probability, the remaining 
elements having zero probability!  

If the output of a data transmission channel statistically depends on the 
current input, as well as on the previous inputs and outputs, then the channel is a 
channel with memory! 

 It should be noted that this is far from being the only suggestive method 
of classifying the data transmission channels.  

Any data transmission requires a data encryption, for a secure 
transmission as well as for the need to maximize the relation signal/noise (S/N or 
SNR). In order to maximize the relation S/N or to restore the useful signal 
(correction of false bits) we need error-correcting codes, which the more complex 
they are, the more they hinder the data processing and reception process. For a 
lower rate of errors and for a shorter period of data processing and reception, we 
should use a smaller number of bits in encoding the transmitted symbols. An 
optimal encoding!  

 
 

2. Entropy of a data transmission channel. Information and 
transinformation of the data channel. 

  
It is usually marked with  H(X), where X is the set of events in space of n 

dimensions: { }nxxxX ,...,, 21= .  

Entropy is measured in bits/events and is given by the 

relation: ∑ ∑ ⋅=⋅=
k kx x k

kkk xp
xpxIxpXH

)(

1
log)()()()( 2     (4) 

where k =1, ..., n; and with I(xk) we mark the information on the event xk; we 
notice that the entropy supplies data on the information of the communication 
channel. They can’t be separated. Entropy as a mathematical function (for a closed 
system) has a parabolic distribution. In order to demonstrate the assertion, we 
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consider a set { }21 , xxX =  of two events in a closed system and mark  p(x1) = ω, 

and p(x2) = 1- ω; thus, the entropical argument function ω will be:  

ω
ω

ω
ωω

−
⋅−+⋅=

1

1
log)1(

1
log)( 22H       (5) 

 This function has a chart given by the following figure: 

 
Figure 2. The graphic of Entropy function 

 

 Obviously, the function H(ω) has indeterminancy in 0 and 1. 
Here are some properties of the entropy: 
a) If we have the sets of variables X and Y with identical distributions, then: H(X) 
= H(Y); but not vice versa!  
b) Always (we notice in fig.2) H(X) > 0; 
c) There is also a maximum value of entropy as seen in fig.2; the maximum value 
is obtained when the two events are equiprobable! It can be shown that for a 
system of n events, the maximum value of entropy is obtained when all the events 
in the system are equally probable;  
d) As a consequence of the previous property, we have: 

)()(),( YHXHYXH +≤ ; equality occurs only if X and Y are totally 

independent from a statistic point of view; the inequality relation may be extended 
to n sets:  X1, X2, ..., Xn; 
e) Also as an outcome of property d) results that transinformation defined as I (X, 
Y) is always higher or equal to zero; equality to zero takes place only if X and Y are 
totally independent from a statistic point of view; this is a very important property 
for the data channels because it is mathematically demonstrated that when we 
send a signal with the transition band B through a data channel characterized by 
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the relation signal/noise (S/N), then transinformation associated to the signal is 
given by the relation:  








 +⋅=
N

S
BYXI 1log),( 2  , bits/second      (6) 

 
3. Definition of optimal encoding and methods of optimal encoding. 

 

We have a code C whose average code length l is defined as:  

∑
=

⋅=
n

k
kk lapl

1

)( , relation 2.1; Probability p(ak) is the probability of the 

symbol ak, and lk is the bit length representation of that symbol; but if any other 
code C 1  used to encode the same set of data leads to an average code length 

1l that always meets the relation 1ll ≤ , then the code C is an optimal code. 

The technical requirements for obtaining an optimal code:  
I. the least likely primary signals should be encoded through longer code words, 
and the signals that occur with higher probability should be encoded through 
shorter code words. Thus, we should respect the set of inequalities:  

)(...)()( 21 napapap ≥≥≥   and  nlll ≤≤≤ ...21 ; 

II. we should not use the average code length l  words until we have exhausted all  

average code length 1−l  words in the encoding operations, otherwise the 

obtained code will not be optimal !  
III. It is necessary that the last two code words corresponding to the last two 
signals with the lowest probabilities have the same code length and differ only 
through the last binary symbol (bit: one has the binary symbol 0, and the other 1!)  
 So far there are two methods of optimal encoding which consider these 
requirements (they can be presented in this paper):   
- The encoding method Shannon – Fano; 
- The encoding method Huffman. 
 

3.1. Shannon – Fano method. 
 

 It is an arborescent/dendritic method, but for an easy encryption it first 
implies a tabular representation. Symbols (for example, letters) are written in a 
table in the descending order of their probabilitiesas they appear (for example in a 
text). Below we illustrate the encoding method Shannon-Fano through a table 
associated with a set of 8 characters markes as a1, a2, ..., a8. 
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Table.1 

 
 

We assumed that the symbols a1, a2 occur with a probability of 1/4 , a3 and a4 
with a probability of 1/8, and the others with a probability of 1/16, thus the sum of 
probabilities should be  1. From the partitioning method as shown in the table, 
result the code words.  

Algorithm Shannon–Fano practically consists of the following steps: 
 - the set of primary letters/symbols in the table is divided into subsets thus the 
sum of symbol probabilities of the two subsets is the same; for example:   
p (a1) + p(a2) = p(a3) +p(a4) + p(a5) + p(a6) + p(a7) + p(a8) = 1/2 ; Similarly, 
the obtained subsets are again divided in subsets so that the sum of probabilities 
is equal, and the procedure repeats itself until there are no more than an element 
subsets  (as seen in the table).  

It is known that, in general, in order to encode 8 symbols we need at least 3 
bits of information. To verify if this type of encoding Shannon-Fano presented in 
the previous example is a good one, we calculate the entropy ( a value, which in 
the information theory, certifies whether the obtained code is optimal or not). The 

entropy calculation provides the average length l  (previously shown). In the case 

given, we have: 
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of course, the log function is in base 2; and A represents the set of symbols a1, a2, 
..., a8.  

It is noted that we obtained an average length 75,2=l  less than 3 (the 

number of bits necessary to encode 8 symbols). Any other coding variant we try, 
we won’t obtain an average code length lower than 2,75, therefore, we can assert 
that this obtained code is optimal. 
 Instead of a tabular representation, we can present the encoding method 
Shannon-Fano through an arborescent graph (a „tree” structure) shown in the 
following figure. This is sometimes the easier more understandable encoding 
method. 

Primary 

symbols 
p(an) Partitions 

Code 

words 

Length 

 li 
a1 1/4 0 00 2 
a2 1/4 

0 
1 01 2 

a3 1/8 0 100 3 

a4 1/8 
0 

1 101 3 
a5 1/16 0 1100 4 

a6 1/16 
0 

1 1101 4 

a7 1/16 0 1110 4 
a8 1/16 

1 

1 

1 
1 1111 4 
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Figure 3. An arborescent graph of the encoding Shannon-Fano method. 

 
The rule is simple: each branch (spatially shifted at about 45 degrees) of 

the „tree” headed to the left attaches a zero, while each branch headed to the 
right attaches a 1. We thus obtain the codes for the symbols a1, a2, ..., a8,  

replacing Table 1. The transit of the „tree” graph is a „down-up” transit, i.e from 
the „root” to the extremities („leaves”).  

The Shannon-Fano method is usually applied (as shown in the given 
example) in the particular cases when the symbol occurence probabilities are 
integer degrees of 1/2; nevertheless these cases occur often in practice.  

Next we will present a method that functions in a series of more general 
cases, where the symbol occurence probabilities do not have to be integer 
degrees of  1/2.   
 

3.2. Huffman method. 
 The Huffman method is based on reducing the signal source. We call them 
reduced sources. Let A be a common source of signals represented by the 
following relation:  









=
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n
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A                    (8) 

In the second line of the matrix A the symbol occurence probabilities can be 
arranged so that they meet the following relation of inequality: 

)(...)()( 21 napapap ≥≥≥ . After successfully arranging the symbol 

probabilities in a descending order, we will try to obtain a reduced source A1  from 
source A summing up the probabilities two by two and reducing the symbols from 
two to one. For example: 
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)()()( 1
1

−+= nnn apapap                       (9) 

the last two symbols become one symbol: an
1; thus, the source matrix A type 2 x 

n becomes a reduced source matrix (once) A1 type 2 x (n-1): 
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We assume that the reduction can be performed n-N times, thus the sum 
of probabilities does not exceed value 1. There is also a restrictive condition 
regarding the reduction: not to spoil the bi-univocity between matrix (source) A 
and the reduced matrix (reduced source) AN, a relation which consists in the fact 
that if we obtain an optimal code for one of the matrices, then there is always an 
optimal code for the other one! ;  
Thus, we obtain the final reduced matrix (the final reduced source) AN, given by 

the relation: 
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aaa
A , a matrix 2 x N, where, 

obviously N < n; and it is desirable for N to be lower than n in order to greatly 
ease the encoding. 
 As in the method Shannon – Fano, we present a suggestive encoding example 
through the source reduction (three times) in a table; we use the initial number of 
5 symbols (a1, a2, ..., a5):  

Table 2 

Initial alphabet Reduced sources 

Reduced 
source 

A1 

Reduced source 
A2 

Reduced source 
A3 

P
ri
m
a
ry
 

s
y
m
b
o
ls
 

p
(a

k
) 

C
o
d
e
 C
 

p(ak
1) C

1
 

p(ak
2) 

C
2
 

p(ak
3) C3 

a1 0,3 00 0,3 00 0,45 1 0,55 0 

a2 0,25 01 0,25 01 0,3 00 0,45 1 

a3 0,25 10 0,25 10 0,25 01   

a4 0,1 110     
a5 0,1 111 

0,2 11 
    

  
Initially, we start by grouping the lowest symbol occurence probabilities (those 
bold 0,1 in the table) after previously arranging them in a descending order in 
column 2 of the table. After obtaining an occurence probability of 0,2, we group 
again the last smallest probabilities (0,2 with 0,25 ... the bold ones in the table). 
We notice that, after the first reduction, disappears the last bit of the three from 
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the last two codes (bolded in the table); thus we reduced the number of bits 
necessary for the encoding to 2!  
 After each selection, we always arrange the probabilities in a descending order 
in the table columns, from top to bottom. After the second reduction disappears 
again the last bit from group 10 and 11, the symbol a3

2 being encoded only 
through one bit with the value 1! The symbols a1 and a2 remain encoded through 
the codes 00 and 01 ( we represented them in the table on the lines 2 and 3; they 
„descended” one line). These will be grouped having the lowest occurence 
probabilities: 0,3 and 0,25 (we did not bold them in the table!) As 0,3 + 0,25 = 
0,55 > 0,45 at the third reduction it will end up on the first line in the table. We 
cannot have more than 3 reductions, because we obtained only 2 symbols and 
their occurrence probabilities verify the mathematical rule: 0,45 + 0, 55 = 1! 
These 2 symbols are encoded only through one bit with the value 0 or 1! We 
succeeded in reducing the number of bits necessary to the initial encoding (by 
obtaining reduced sources) from 3 to 1! The obtained code is optimal! Another 
code with a lower average length does not even exist! 
 As the Huffman method is an „arborescent” one, we represent the previous 
example through an arborescent structure: 

 
Figure 4. An arborescent structure of Huffman method. 

 It is noted that this time in the tree nodes we do not have the same number 
of bits as in the Shannon-Fano method, the number of bits decreasing from the 
„leaves” towards the „root”. 

4. Conclusions  

The methods of encoding the data in the communication channels increased 
in the last two decades.  

Both presented methods of encoding data in the transmission channels are 
widely used in the data compression technique.  

Eliminating redundant data is very important when dealing with great data 
flows, transmissions at higher speed and with increased interception safety in the 
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communication channels. Data compression is used in the new data transmission 
technologies ATM (Asynchronnous Transfer Mode), SDH, SONET (optical fibre 
networks), WiMAX , LMDS, etc. and not only.  

As concrete applications of the two data compression methods we mention the 
CD burn (especially the audio data) text compression, archive programs used in 
PC such as: .zip , .arj (these are well-known), but not only.  
 The Huffman encoding is used in the compression of digital images, when 
each pixel takes values from a finite set (in the case of selfcoloured images from 0 
to 255). 
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