
 181

Florica Novăcescu

High-performance Scientific Computing using
Parallel Computing to Improve Performance
Optimization Problems

HPC (High Performance Computing) has become essential for the ac-
celeration of innovation and the companies’ assistance in creating new
inventions, better models and more reliable products as well as obtain-
ing processes and services at low costs. The information in this paper
focuses particularly on: description the field of high performance scien-
tific computing, parallel computing, scientific computing, parallel com-
puters, and trends in the HPC field, presented here reveal important
new directions toward the realization of a high performance
computational society. The practical part of the work is an example of
use of the HPC tool to accelerate solving an electrostatic optimization
problem using the Parallel Computing Toolbox that allows solving
computational and data-intensive problems using MATLAB and Simulink
on multicore and multiprocessor computers.

Keywords: HPC, parallel supercomputers, parallel computing,
scientific computing

1. Introduction

The increasing requirements of computing resources have determined two di-
rections of development. On the one hand, the massive parallel supercomputers
which have constituted a material basis for some research centres in the world and
which have represented and they still represent the actual frontier in the field of
numerical simulation of different physical phenomena. The number of these com-
puters is dramatically limited due to the price and the high maintenance and ex-
ploitation costs, being produced in a very small bank. On the other hand, the so-
called clusters (networks of computers) which represent the standard of hardware
endowment for universities and research institutes, although they are composed of
performant units at the level of personal computers or work stations, they repre-

ANALELE UNIVERSIT ĂŢII

“EFTIMIE MURGU” RE ŞIŢA

ANUL XVIII, NR. 3, 2011, ISSN 1453 - 7397

 182

sent an extremely important potential of computing resources and which is hardly
used in the present.

By the complexity of flow equations and the difficulties which accompany the
numerical solving of mathematical models, the fluids mechanics has constituted
one of the main stimulus for the development of new technics of analytic solving of
equations and equations systems with partial derivatives and in the last decades,
their numerical solving. The development and maturation of numeric methods and
their implementation algorithms constitutes an undoubted achievement of the last
two decades. Simultaneously, the available hardware resources have substantially
increased the speed of calculation and the memory capacity, facilitating the current
use of the numerical simulation of flows, analysis and optimization.

Therefore research and development are used in order to achieve scientific
progress, for which HPC is only an instrument which is sometimes blunt, always
expensive, but, however, it is an important instrument.

We live in a period interested in the use of the high performance calculation
and a period with promises of unequalled performance for those who can effec-
tively use the high performance computing.

2. The field of high performance computing

The work field could be translated in computing in science and engineering
(CSE) or computational science and engineering (CiSE).

From the soft point of view, the high performance computing field (HPC)
means the parallel computing (computer science) and the scientific computing
(applied Mathematics).

The parallel computing means the simultaneous execution on several proces-
sors of the same instructions with the aim to solve faster a problem, subdivided
and especially adapted. The parallel computing is used for problems that require
many calculations and thus, they last very long, but which can be divided in inde-
pendent, simpler sub-problems [2].

In the simplest sense, the parallel computing is the simultaneous use of mul-
tiple computing resources in order to solve a computing problem to be executed by
several processors, thus, a problem is “broken” into more distinct parts which can
be solved in the same time (contestant), each part being divided in a series of in-
structions, and the instructions for each part are simultaneously executed on dif-
ferent processors according to Figure 1 [2].

 183

Figure 1. Parallel computing.

A parallel computing system is a computer with several processors which work
in parallel. The first such systems were the super-computers. The new processors
of multi-core type for PCs are also parallel computing systems.

The parallel computing systems are different by their inter-connecting type
which can be between the component processors (known as processing elements
or PEs) and between processors and memory. Programming in parallel computing
is centred on the partition of the whole problem to be solved into separate tasks,
allotting the tasks to the available processors and their synchronization in order to
obtain convincing results [3].

The scientific computing is based on the construction of mathematical models,
quantitative analysis techniques and the use of computers in order to solve scien-
tific problems [6]. It practically represents computer simulations applications and
other forms of computing the problems in diverse scientific disciplines [6]. It is
based on the construction of mathematical models, quantitative analysis tech-
niques and the use of computers in order to analyse and solve problems. It practi-
cally represents applications of computer simulations and other forms of computing
the problems in diverse scientific disciplines.

The scientific computing represents the design and analysis activity for the nu-
meric solving of mathematical problems in science and engineering, and tradition-
ally this activity is called numeric analysis. The scientific computing is used in order
to simulate natural phenomena, using virtual prototypes of models in engineering
[7]. The general strategy is to replace a difficult problem with an easier one having
the same solution, or a very similar solution, that is, they wish to replace an infinite
problem with a finite problem, the differential one with the algebraically one, the
non-linear with the linear, and eventually, a complicated one with a simple one,
and the solution obtained can only approximate the solution of the original prob-
lem.

3. Architecture of sequential computers. Stored-program com-
puter architecture.

With the aim of writing efficient scientific codes, it is important to understand
the computer’s architecture. The speed difference between the two codes which

 184

calculate the same result can vary from only some percents upwards, according to
the way in which the algorithms are ciphered for the processor’s architecture. Ob-
viously, it is not sufficient to have an algorithm and to “put them on the computer”
because we should have some knowledge connected to the computer’s architec-
ture and sometimes these are crucial.

Some problems can be solved on a single processor, others require a parallel
computer which contains more than a processor, but taking into account the facts
mentioned above, even for the parallel processing, it is necessary to understand
the architecture of individual processors.

When we generally discuss about computing systems, we must take into ac-
count a certain architectural concept. This concept was discovered by Turing in
1936 and it was applied for the first time in a real machine (EDVAC) in 1949 by
Eckert and Mauchly [1].

In Figure 2 we presented the block diagram of a stored-program type of com-
puter. Its main feature which makes it different from the previous models is that
its instructions are numbers which are memorised as data in the memory. The in-
structions are real and executed by the control unit; a separate arithmetic/logic
unit which is responsible for real computing and deals with data stored in the
memory, together with the instructions. I/O facilitates the communication with the
users. The control unit and the arithmetic unit together with the interfaces corre-
sponding to the memory and I/O form a central processing unit (CPU-Central Proc-
essing Unit).

Figure 2. Stored-program computer architecture.

Figure 2 describes a design with an undivided memory which stores both the
program and the data (“stored program”) and a processing unit which executes
the instructions, operating on the data. Likewise, the programs are allowed to
modify or to generate other programs because the instructions and data are in the
same “deposit”. This allows us to have editors and compilers: the computer treats
the program’s code as some data on which it can operate [4].

The stored program, which loads the control unit is stored in the memory to-
gether with any data that the arithmetic unit requires.

Programming a stored program type of computer supposes the modification
of memory instructions, which can be mainly achieved by another program; a
compiler is a typical example in this sense because it translates the constructors of

 185

a high level of language such as C or Fortran into instructions which can be memo-
rised in the memory and then executed on the computer.

This project is the basis of all today’s computing systems and its inherent
problems still prevail:

• The instructions and data must continuously “load” the control units and
the arithmetical one, but the speed of the memory interface represents a limitation
of the computing performance. This brake is often called von Neumann bottleneck.
The architectural optimizations and the programming techniques can attenuate the
adverse effects of this constraint, but it must be clear that this one remains one of
the most severe limiting factors.

• The architecture is inherently sequential, processing a single instruction
with a single operator or a group of operators from the memory. In this sense the
concept SISD (Single Instruction Single Data) was created. There are possibilities
of modification and extension of this architecture in order to support “different
types” of parallelism and the way such a parallel machine can be efficiently used.

Despite these shortcomings, no other architectural concept was found for the
wide use in a similar way during the 70 years of electronic digital calculation [5].

5. Parallel computers

We talk about parallel computing every time a number of “computing ele-
ments” (cores) solve a problem in a cooperant way. All the modern architectures of
supercomputers depend in a large measure on the parallelism and the number of
processors in supercomputers which is in a continuous increase. The medium
number of processors multiplied 50 times in the last decade. Between 2004 and
2009, the occurrence of multicore chips has led to a dramatic increase of the num-
ber of the basic typical cores [7].

In this subchapter, we present some theoretical notions regarding the funda-
mental variants of the parallel computers: shared-memory and distributed-
memory. Both use the communication networks between processors or more gen-
erally between “computing elements”.

 186

A parallel computer with shared memory is a system in which the number of
processors works on a space of physical addresses shared and common for all the
processors. Although transparent for the programmer in what concerns the func-
tionality, there are two varieties of shared memory systems which have perform-
ance characteristics very different concerning the access to the main memory,
thus: uniform memory access (UMA) systems in which the latency and the band-
width are the same for all the processors and all the memory locations, also called
symmetric multiprocessing (SMP-symmetric multiprocessing), and cache-coherent
nonuniform memory access (ccNUMA) in which the memory is physically distrib-
uted but logically it is common (shared) [4].

Figure 3 presents a simplified block diagram of a parallel computer with dis-
tributed memory. Each P processor is connected to an exclusive local memory,
meaning, no other CPU has direct access to it.

Figure 3. Simplified block diagram of a distributed memory parallel computer.

Nowadays, there is no distributed memory system. In this sense the scheme
must be seen only as a programming model. Because of price/performance all the
parallel machines of today, first of all the PC clusters are formed from a number of
“computing nodes” with shared memory, with two or more processors; the point of
view of distributed memory programmers does not reflect this. It is even possible
(and rather usual) the use of programming the distributed memory on pure ma-
chines with shared memory [5].

Each node contains at least a NI - network interface which mediates the con-
nection to a communication network. A serial process is executed on each CPU
which can communicate with other processes on other CPU through the network.
It is easy to imagine in what way several processors could work together on a
common problem in a parallel computer with shared memory, but as there is no
remote memory access on machines with distributed memory, the problem must
be promptly solved by sending messages forward and backward between proc-
esses, taking into account the MPI paradigm. Although sending messages is more
complex to use than any programming of shared memory paradigm, the super-
computers on a large scale are exclusively from the variant of a shared memory at
“global” level [7].

 187

6. Applied development.

The optimization problem whose solution is sought to be accelerated using
parallel computing is an electrostatic problem and it is described as follows:
considered N electrons in a conducting body. The electrons arrange themselves to
minimize their potential energy, subject to the constraint constraint of lying inside
the conducting body. The electrons arrange themselves to minimize their potential
energy subject to the constraint of lying inside the conducting body. At the
minimum total potential energy, all the electrons lie on the boundary of the body.
Because the electrons are indistinguishable, there is no unique minimum for this
problem (permuting the electrons in one solution gives another valid solution).

The first phase of implementation of the above application, is the formulation
of the problem in Matlab, therefore have made three Matlab files:
electronProblemOptimization.m that implements the optimization problem,

in Figure 4 is defined the objective function in sumInvDist.m file, and the

nlConstraint.m file defines the non-linear constraints.

The optimization goal is to minimize the total potential energy of the electrons
subject to the constraint that the electrons remain within the conducting body. The
objective function, potential energy, is the sum of the inverses of the distances
between each electron pair (i,j = 1, 2, 3,… E):

∑
< −

=
ji ji xx

energy
1

 (1)

The objective function is defined in sumInvDist.m file, as follows:

Figure 4. The Matlab file which defining the objective function.

 188

The constraints that define the boundary of the conducting body are:

yxz −−≤ (2)

() 11 222 ≤+++ zyx (3)

The first inequality is a non-smooth nonlinear constraint because of the
absolute values on x and y. Absolute values can be linearized to simplify the
optimization problem. This constraint can be written in linear form as a set of four
constraints for each electron, i, where the indices 1, 2, and 3 refer to the x, y, and
z coordinates, respectively:

02,1,3, ≤−− iii xxx (4)

02,1,3, ≤+− iii xxx (5)

02,1,3, ≤−+ iii xxx (6)

02,1,3, ≤++ iii xxx (7)

This problem can be solved with the nonlinear constrained solver fmincon in
Optimization Toolbox. The fmincon solver (find minimum of constrained nonlinear
multivariable function) trying to find a minimum of a constrained scalar function of
several variables from an initial estimate. Generally this is called nonlinear
constrained optimization (with difficulties) or nonlinear programming.

Linear inequality equations (Aineq*x = bineq) are defined for E electrons:

The starting condition will set all electrons to initially lie in the center of the
conducting body:

 189

The execution upload the problem on the work space and opening of
optimization tools shown in Figure 5:

Figure 5. The optimization tool

The execution of the solver (optimization’s running) is triggered by pressing

the Start button in the optimization tool's window, being able to see, at the end of
execution, the total number of iterations performed and the objective function
value, as shown in Figure 6.

 190

Figure 6. The oobjective function value and the number of iterations

obtained from serial execution of optimization problems.

This provides a snapshot of electrons in the form of tears (as shown in Figure

7) and the elapsed time displayed in the command window.

Figure 7. Distribution of the electrons

The default configuration of the optimization toolbox assume execution

without parallel computing.

 191

Further, runs this optimization problem in parallel on four cores using parallel
computing, opening an Matlab parallel session (matlabpool) that runs the

specified optimization problem, as shown in the following sequence of code:

From Figure 8, which is a print screen of the commands window, we can see
the value of the serial execution time for the optimization problem which is
approximately equal to 70 seconds, and the parallel execution time achieved by
the parallel execution of the optimization problem which is approximately equal to
22 seconds.

Figure 8. The result of serial and parallel execution (the serial and parallel time)

4. Conclusion

The obtained practical results confirms the theory on the utility of high
performance scientific computing, taking into account the reduction of the
execution time for optimization problem, which is an important performance
aspect.

Using parallel computing to increase performance of solving the optimization
problem formulated in this paper is just a simple example of when the parallel
computing may prove useful, but surely that it is not unique, as mentioned in the
first part of this paper where spoke about high performance computing and the
possibilities of using it.

References

[1] Gharaibeh A., Ripeanu M., Size Matters: Space/Time Tradeoffs to Im-
prove GPGPU Applications Performance, IEEE/ACM International Confer-
ence for High Performance Computing, Networking, Storage, and Analysis
(SC 2010), New Orleans, LA, November 2010.

 192

[2] Grama A., Gupta A., Karypis G., Kumar V., Introduction to Parallel
Computing, 2nd edition, Addison-Wesley, 2003.

[3] Catanzaro B., Fox A.,. Keutzer K, Patterson D., Su Bor-Yiing, Snir M.,
Olukotun K., Hanrahan P., Chafi H., Ubiquitous Parallel Computing from
Berkeley, Illinois, and Stanford, Micro, IEEE, vol.30, no.2, pp.41-55,
March-April 2010.

[4] Hager G., Wellein G., Introduction to High Performance Computing for
Scientists and Engineers, CRC Press Taylor & Francis Group, 2011.

[5] Levesque J., Wagenbreth G., High Performance Computing: Program-
ming and Applications, Chapman and Hall/CRC, 2010.

[6] Michael T. Heath, Scientific Computing. An Intorductory Survey, The
McGraw-Hill Companies, 2002.

[7] Victor Eijkhout, Edmond Chow, Robert van de Geijn, Introduction to
High-Performance Scientific Computing, 2010.

Address:

• Prep. Eng. Florica Novăcescu, “Eftimie Murgu” University of Reşiţa,
Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa, f.novacescu@uem.ro

