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Pipeline Analyzer using the Fractional Fourier 
Transform for Engine Control and Satellites Data 

The aim of this paper is to present an algorithm for computing the 
fractional Fourier transform integrated into the pipeline of processing 
multi-variate and distributed data recorded by the engine control unit 
(ECU) of a car and its satellites. The role of this transform is vital in 
establishing a time-variant filter and therefore it must be computed in a 
fast way. But for large scale time series, the application of the discrete 
fractional Fourier transform involves the computations of a large 
number of Hermite polynomials of increasingly order. The parallel 
algorithm presented will optimally compute the discrete Fourier-type 
transform for any given angle.  
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1. Introduction 

 The main observation that can be considered as the starting point of this work 
is the fact that the noise which is recorded by the ECU and the satellites together 
with acceleration data is not usually correlated with the useful signal and it can be 
filtered in the best way using an convex domain shape in the time-frequency place. 
Therefore, the use of the fractional Fourier transform in the noise filtering step of 
the pipeline analyzer for the acceleration data is an appropiate tool. The fractional 
Fourier transform (FRFT) is a generalization of the ordinary Fourier transform, al-
lowing a variable rotation in the frequency plan by any angle. By a standard con-

vention ([18]), it is denoted the a-th order fractional Fourier transform F a as the 
a-th power of the ordinary Fourier transform operation F. The first order (a = 1) of 
the fractional transform corresponds to the ordinary Fourier transform operation, 
and the zeroth-order fractional transform is the identity operation. Thus the first-
order fractional transform of a function is exactly its ordinary Fourier transform, 
and the zeroth-order transform is the function itself.  
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 Although the FRFT is an intuitive tool, its discrete counterpart is not as 
straightforward to implement in an fast way. In ([7]), it was proposed a type of 
DFRFT(discrete FRFT) by searching the eigenvectors and eigenvalues of the DFT 
matrix and then computing the fractional power of the DFT matrix. This type of 
DFRFT will work similar to the continuous FRFT and will also satisfy the properties 
of orthogonality, additivity and reversibility. The problem is that the eigenvectors 
cannot be expressed in closed form and they also lack the fast computational 
algorithms ([12]). Therefore a parallel algorithm will be a key solution especially 
when dealing with large time series for filtering reasons.  

2. Discrete Fractional Fourier Transform 

 The DFT matrix has only four distinct eigenvalues (λk = exp(-jπk⁄2) 1,-1,j,-j) 

([1]). The eigenvalues are in general degenerated so that the eigenvector set is 
not unique. For this reason, it is necessary to specify a particular eigenvector set to 
be used. In the continuous case, this ambiguity is resolved by choosing the 
Hermite-Gaussian functions as the eigenfunctions. Since our aim is to use a 
definition of the discrete transform that is completely analogous to the continuous 
transform, we will resolve this ambiguity in the classical manner ([2,5]), by 
choosing the common eigenvector set of the DFT matrix and the discrete 
counterparts of the Hermite-Gaussian functions. Another ambiguity arises in taking 
the fractional power of the eigenvalues since the fractional power operation is not 
singular valued. This ambiguity will again be resolved by analogy with the 

continuous case ([2,5]), by taking λk
a = exp(-iπka⁄2). Distinct definitions based on 

other choices are discussed in ([14]). The particular choice we are concentrating 
on is the one that has been most studied and has overwhelmingly found the 
largest number of applications.  Denoting the discrete Hermite-Gaussians as uk[n], 

the definition of the discrete fractional Fourier transform becomes: 
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Now, we must explicitly define the discrete counterparts of the Hermite-Gaussian 
functions. 

3. Parallel algorithm  

We will consider that we have available on our system k processors. The 
parallel algorithm will be described for a distributed memory system, meanwhile 
for a shared memory machine, the implementation is quite straightforward with a 
concurrent of data accessing due to the independence of functional tasks and the 
minimum data exchange among processors. Therefore, this case can be directly 
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obtained from a simple modification of the other one and we will concentrate our 
attention on the more complex situation. The implementation of the algorithm 
wants to reduce at maximum the communication time. We recall that our discrete 
framework is made of k processors each working simultaneous on n⁄k samples. We 

will describe in details in the follow each step of the algorithm using MATLABTM 
notations.  

Algorithm 1 - Parallel algorithm for DFRFT 

Input: x(n) – signal of length n, k-number of processors, angle – a vector of angles 

GLOBAL STEP 

1. Broadcast signals of length n/k, and the angles to the available k-processors 

LOCAL STEPS: 

1. Apply locally the iterative formula for the Hermite-Gauss polynomials 

2.  Apply locally the DFRFT matrix using the vector with the angles 

GLOBAL STEP 

2.  Integrate into the pipeline the data blocks on each processor 

Note that the efficiency of this algorithm is not much influenced by the 
transmission time due to fact that we are only sending once and we are only 
receiving once (global broadcast) and this communication time could be associated 
with a globally storage procedure running sequentially on one core processing 
element. Since all parallel computations are done at the local level the coefficient 
of speed-up in comparison with the serial and while the efficiency increases with a 

factor of n⁄k. We used for tests MATLAB
TM

 on a single-core standard PC for the 
case of sequential implementation and MATLAB MPI (from MIT) on a multi-core 
processing machine.  

In the table 1 below we summarize the statistical findings of numerical 
experiments, processed several times. Also, the speed-up versus the sequential 
implementation is displayed in Figure 1. In most cases less than half execution 
time is needed. This confirms the efficiency and the scalability of parallel method 
also from the run time point of view.  
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Table 1. Run time timings 

 k = 3 k = 5 k = 12 
 Seq.  Par.  Seq.  Par.  Seq.  Par.  
       
N=480  1.600  0.694 4.123  2.101  45.664  17.679  
N=480  0.723  0.307 1.163  0.583  4.988  2.976 
N=480  0.160  0.083 0.349  0.159  1.702  0.865  
N=1200 18.770 6.432 49.647 12.651 597.034 186.765 
N=1200 4.541  1.792 10.751 4.806  52.635  30.549  
N=1200 1.496  0.378 2.680  1.218  11.363  7.709  
N=240  0.077  0.065 0.551  0.350  3.972  2.524  
N=240  0.018  0.017 0.171  0.117  0.810  0.478  
N=240  0.011  0.013 0.048  0.023  0.197  0.198  

 

 

 

 

 

 
 

 

 

 

 

Figure 1. Speed-up 
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3. Integration into the pipeline 

The complicated structure of the pulses from the ECU, involve mix stationary 
components and transients, transmitted over several overwritten channels. During 
crash tests or real crashes, the data are known only on a nonuniformly spaced 
sampling set. This nonuniformity is due to the partial or total destruction of the 
sensors during the crash and prevents the use of the standard methods from 
Fourier analysis. We will consider four sensors located on the four extremities of 
the car (north, south, west, east) and a central processing unit situated in the 
geometric center of the car at equal distance from the distributed sensors. Lets 
consider for example that each sensor will measure with some disturbances the 
acceleration signal but due to the expected impact and the presence of noise the 
sampling set is irregular. Moreover, even if the assumption that a function belongs 
to a particular space is valid, the samples of the acquisition are not exactly 
measured due to digital inaccuracy, or the samples are corrupted by noise when 
they are obtained by a real measuring device. Therefore, will use for testing 
purposes an application of the proposed method to accelerometer-type data where 
it is crucial to have a fast processing method (if possible close to real time) of the 
recorded samples during a crash. The purpose of the numerical quality of the 
measurement is not within the scope of this paper and we will consider here only 
the possibility of applying the algorithm, the acceleration of the method and the 
possiblity of integrating in a pipeline analyzer. We will consider a multi-variate 
systems of four simulated signals, generated by a car crash simulator with the 
standard parameters. The pipeline processing for the crash test data, recorded by 
an accelerometer, starts with a pre-filtering before sampling at a roll off frequency 
of 4,000 Hz. The pre-filtered data, referred to as wideband data, contains the 
same signal as the raw data (the impact stress recorded by an accelerometer). 
This data is then sampled at a rate of 12,500 points per second (or 0.08 milli-
seconds per data point) and yields an input acceleration. To obtain the signal in its 
useful frequency range, a digital filtering technique which satisfies the frequency 
response corridor specified by SAE J211 (SAE Recommended Practice on the 
Instrumentation for Impact Tests) should be used.  After this step we can use the 
DFRFT for the parallel filtering of the frequency channels. This step is essential for 
crash signal applications where in most of the cases the noise is not correlated 
with the data. 

4. Conclusions 

 
The pipeline parallel method for computing the fractional Fourier transform, 

improves the treatment of the data filtering inside the pipeline by a n⁄k factor of 
efficiency and cuts the processing time in a scalable way determined by the direct 
proportion between the growth of the number of samples and the number of 
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atoms. The tests performed in the case of car crash data show the potential of the 
method on realistic applications where the data is corrupted by noise or it is non-
uniform sampled.  
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