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Vocal Tract Modeling: from Signal to Structure 

Tube models are very popular for the computational modeling of 
speech production. For nasals and nasalized vowels a minimum of two 
tubes is necessary to accurately model the spectral components of the 
speech signal. Typically, such models are estimated applying a pole-
zero model as a first step and then estimate the tubes cross-sectional 
areas based on this model. Here, we introduce a method that estimates 
the tube areas without the necessity to estimate a pole-zero filter 
model. The algorithm is based on a variational Bayesian scheme under 
Gaussian assumptions. Probabilistic priors are used to enforce 
smoothness of the tubes. The method is tested on simulated data and 
results show that under strong smoothness prior the algorithm 
converges more reliably than an unconstrained method. 

Keywords: vocal tract, two tube model, pole-zero model, variational 
Bayes 

1  Introduction 

        Computational models for speech production and speech analysis have been 
of research interest since the 1960s [1, 2, 8, 10]. In humans, the vocal tract (VT) 

is a nonuniform acoustic tube of about 17 cm length. One end is terminated by the 

vocal chords and the glottis whereas the opposite end is terminated by the lips. At 
the velum which acts similar to a trap door, the nasal tract, about 12 cm in length, 

is coupled to the vocal tract [2]. By changing the placement of velum, lips, jaw and 
tongue the cross section of the VT and thus the resonances of the tract are 

changed producing different sounds.  
         Most of today's speech analysis models are based on linear prediction coding 
(LPC [8]). It is assumed that the vocal tract acts as a linear filter that is driven by 

an impulse train (opening and closing of the glottis). It is further assumed that for 

(non nasalized) vowels an all-pole filter with transfer function )(1/=)( zAzH , 

with sT
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used to model speech production. Given a speech signal, the coefficients ia  of the 

all-pole filter can be determined by applying the LPC to a given signal. In [10], 
Wakita showed that the LPC can be directly related to a simple (mechanical) model 

(see also Section 1.1), where the vocaltract is represented by a single tube and 
appropriate boundary conditions at lips or glottis are used. 

 

   
Figure 1. Schematic of the vocal tract. Taken from [8]. 

  
During the pronunciation of nasals and nasalized vowels, however, the velum 

opens and the additional resonances caused by the nasal tract influence the 

speech signal. The envelope of the speech spectrum has additional sinks (zeros) 
which cannot be described efficiently using an all-pole filter. In these cases a 

rational pole-zero filter with transfer function )()/(=)( zAzBzH  is more 

appropriate for describing the spectrum of the signal. In order to determine the 

polynomial coefficients of )(zA  and )(zB  a nonlinear system of equations has to 

be solved and the construction of a solution algorithm is non trivial (see e.g. [7]). 

Additionally, whereas most existing pole-zero filter models are based purely on 
signal processing concepts, only a few are based on acoustical models ([5, 6, 9]), 

thus lacking a direct link to the mechanics of the vocal tract. Such acoustical 
models are also based on segmented tubes, however in order to allow for zeroes in 

the transfer function, at least one branching point is required. Therefore, contrary 

to the single tube case, there exists no direct relation between the two tube model 
and the pole-zero model (see Section 1.2). Still, the methods used to estimate two 

tube models are based on first estimating a pole-zero model and then fitting the 
vocal tract shape based on this model. Here, the aim is to introduce a all-in-one 

approach using a variational Bayesian scheme introduced in [3] that utilizes 

relatively mild assumptions about the vocal tract shape in order to constrain the 
solution of the non-linear system. Another advantage is the possibility to build 

hierarchical models where e.g. a second level that introduces an intra person 
statistic across multiple trials. 
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1.1 One Tube Model 
 

The simplest and most commonly used model for the vocal tract can be 
constructed by representing the vocal tract as a straight segmented tube ([1, 10]). 

It is assumed that the transverse dimension of each section of the tube is small 

enough compared with the wavelength so that the wave propagating through the 
tube can be modelled by a plane wave. The second assumption is that heat loss 

and loss due to viscosity can be neglected. Using these assumptions, the wave 
motion inside the m -th segment can be described by the 1D-wave equation  
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where c  is the speed of sound. In each segment m  with length l∆  its solution is 

given as a forward and backward-going wave with volume velocity components 
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 with )/2i(exp= clz ∆ω . Using the continuity conditions of 

pressure and flow at the boundary between two segments, it can be shown that 
the velocity flow components in two adjacent segments are connected by [10]  
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where the reflection coefficient mµ  is given by the relation of the cross-section 

areas mA  of segment m  and segment 1+m :  
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The transfer function of the vocal tract is then defined by the relation of the flow 

at the lips and the flow at the glottis. In [10], Wakita showed that the reflection 
coefficients can be calculated using the LPC-algorithm if the number of segments 

M  are related to the sampling frequency sF  by )/(2= lMcFs  where l  is the 

overall length of the vocal tract. 

1.2.  Two Tube Model  

The drawback of the one tube model is that the contribution of the nasal tract on 

the speech signal is neglected. For vowels this poses, in general, no problem, but if 
nasals like /m/ or /n/ are to be considered, it is necessary to include an additional 

tract. In their model, Lim and Lee [5, 6] consider an acoustic tube consisting of 

two tracts. The model itself consists of three parts (see Fig. 2): A pharynx part 

between glottis and the velum (nasal-oral branch) consisting of L  segments, an 

open nasal tract ( M  segments) and the oral tract ( N  segments) which is closed 
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Figure  2. Generalized vocal tract model. Taken from [5]. 

  

at the lips. As in Section 1.1 the tracts are modeled using a segmented tube, and 

the same assumptions for the tube as in Section 1.1 are used. Again, using 
continuity conditions between the segments and at the coupling of the three 

branches, a rational transfer function )()/(=)( zAzBzH  can be derived, where  
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−  given by the scaled flow at the back end of the oral tract  
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Here, ( )111

~~
= −−− + NMN AAAσ  defines the relation of cross section areas of oral 

and nasal tract areas at the velum. The 11
~,,~

−Nµµ K  are the reflection coefficients 

for the oral part, 11 , −Mµµ K  are the reflection coefficients for the nasal part and 

LMM +µµ ,K  the reflection coefficients for the pharynx part. Lim and Lee added 

an additional damping term 0
~µ  at the lips to include losses into the model [6]. 

From the above equations for )(zB  and )(zA  it is clear, that, unlike in the case 
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of the single tube model, no one to one mapping between the NLM 2++  

polynomial coefficients and the 1+++ NLM  reflection coefficients exists. 

Hence, estimation of the area function of a two tube model is not straight forward. 

Thus far, two different approaches have been suggested in the literature [6, 9]. 
The general scheme of both approaches is similar, determining first the polynomial 

coefficientes of the pole-zero or ARMA (autoregressive moving average) transfer 
function and using this information to solve for the tube model parameters. Both 

methods make use of the fact, that the numerator polynomial )(zB  can be 

directly mapped to the oral reflection coefficients iµ~  using a step down algorithm 

[6, 8], similar to the one tube model. Based on these values, the nasal and 

pharyngal parameters are either estimated by minimizing the error with respect to 

the polynomial coefficients of the denominator [6] or by applying an inverse filter 
algorithm to the signal after dividing it by the numerator transfer function [9]. 

Both these methods give precedence to the numerator polynomial and thus 
assume, that the zeroes are modeled accurately by whatever ARMA estimation is 

used. Here, we suggest a different approach that estimates all coefficients 
simultaneously, thus avoiding this unequal weighting. This is highly non-trivial due 

to the complex relation between reflection coefficients and polynomial coefficients 

and the restrictions that apply to the reflection coefficients which must lie between 
-1 and 1. Hence, a Bayesian algorithm is used that includes probabilistic prior 

assumptions about the vocal trace, in this case about the smoothness. The 
estimation scheme introduce here is based on a general variational Bayesian 
scheme under Gaussian assumptions introduced in [3] and will be described below. 

2  Ansatz 

Similar to [7], the estimation scheme models the log of the transfer function 

)(zH  based on the log of the spectral envelope )(ωG  of the recorded signal. 

The generative model for the log transfer function can be written as 

 ( ) ( ) ( ).,==ln ωεωθω +fyG  (5) 

The function ( )ωθ ,f  incorporates the non-linear transformation from the 

reflection coefficients to the log transfer function (see Section 1.2) as well as a 

non-linear mapping from the i -th parameter iθ  to the i -th reflection coefficient 

iµ  defined as ( )2erf= ii θµ , with erf being the Gauss error function. The 

sigmoidal shape of this function ensures, that the reflection coefficients are 

restricted to the open interval 1,1)(− . The nasal-oral coupling parameter σ  is 

restricted to the interval (0,1)  by using the scaled and shifted error function. One 

additional parameter is added that models a scaling factor for the transfer function. 
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This parameter has to be positive, which is achieved by a log transformation. 

Therefore, the parameter vector is of dimension 2+++ LNM . 

The measurement error ε  is assumed to be normally distributed with ( ))(0, λΣN  

with λ  parameterizing the error covariance. The details of this parameterization 

will be given below. The normality assumption about the error yields a Gaussian 

likelihood function 

 ( ) ( )( ),,=,| Σθλθ fyp N  (7) 

where ( )λΣ  is now written as Σ  for simplicity. The priors for θ  and λ  are also 

Gaussian i.e.  

 ( ) ( ).,=)(and,=)( 11 −− ΠΠ λλθθ ηληθ NN pp  (8) 

θΠ  and λΠ  are the respective precision matrices (i.e. inverse covariance 

matrices). The parameters are estimated based on a variational Bayesian scheme 

derived in [3]. The variational distribution is given as )()(=),( λθλθ qqq  with 

( )θθµθ Σ,=)( Nq  and ( )λλµλ Σ,=)( Nq  due to the normality assumption. The 

function to be maximized is the marginal likelihood (sometimes also called the 

lower bound estimate for the model evidence) and is given as 
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with θθθ ηµε −=  and λλλ ηµε −= . The scheme that maximizes this quantity 

performs two steps alternately. First, the vocal tract parameters are updated using 

the following set of equations: 
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with I  being the variational Energy, a quantity related to F  (for details see [3]). 

After a single update, the error covariance parameter is updated, such that the 
marginal likelihood is maximized: 
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The matrices 
)(iP , 

),( jiP , 
)(kA , and 

),( lkB  are defined as 
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lJ ,  denotes the l -th colum of the Jacobi matrix µ∂∂fJ = . If, after performing 

both steps, F  has not increased, the step size of the first step is halved and the 

whole process is repeated. It is important to note that here second order 

derivatives of the function f  are ignored. 

Vocal tract priors 

Informative priors for the reflection coefficients would require the knowledge of 
area function distributions for different phonemes and also probabilistic information 

of nasal tract areas. As those quantities are not well known in general, we use a 
very straight forward approach by requiring a certain smoothness of the vocal tract 

(see e.g. [4] for the area function of the LPC when both, glottal and lip losses are 
estimated). Such a constraint can be implemented using priors that are centered 

around zero, thereby preferring solutions with small reflection coefficients and thus 

a smooth vocal tract. The nasal-oral coupling coefficients σ  is also centered 

around zero, resulting in equal nasal and oral coupling areas because of the non-

linear transformation. 
Noise priors and assumptions 

In theory, the scheme described above allows to model the precision matrix 
1−Σ  

as a non-linear function of a set of parameters iλ . Here, we chose the simplest 

parameterization possible, resulting in a diagonal precision matrix given by a single 

parameter λ . Therefore, 

 nIλexp=1−Σ  (13) 

with nI  being the unit matrix of the dimension of the number os samples n . The 

prior variance for λ  was set to 
510  which essentially implies a flat prior. 
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2.1  Evaluation 
For the evaluation of the method we used two sets of simulated data based on the 

parameters given in [6]. Based on an assumed sampling frequency of 10kHz, 

4=L , 6=M , and 5=N , thus resulting in a total of 15 reflection coefficients 

plus σ  and the scaling factor. 

Firstly, the transfer function was calculated from given reflection coefficients and 

used as input data for the model. Six different prior precisions values 

( .2,0.5,1,0.05,0.1,0=)( 1−Πθdiag  and 2 ) were tested with a lower variance 

(higher precision or tighter priors) implying stronger a-priori assumptions. The 

prior for the scaling factor was set to 100 . Since there is no noise in the data, the 

algorithm should ideally converge to the true values. In order to investigate the 
effect of different prior settings, the estimation was repeated for 200 different 

initial parameter settings. The starting conditions were varied by adding a Gaussian 
noise with zero mean and standard deviation 0.1 and 1 to the neutral starting 

position (i.e. all reflection coefficients are zero and σ  equals 0.5). The 200 

different starting conditions were fixed across conditions. The results were 

evaluated by looking at the area functions and the pole and zero positions as well 

as the deviation from the envelope over the different initial conditions. This 
analysis was done for two different assumed speech segment lengths of 20ms 

(resulting in 100 data points) and 40ms (200 data points) In addition we also used 
a standard Gauss-Newton (GN) scheme minimizing the sum of squares of the error 

without any prior assumptions in order to evaluate the reliability of the 

convergence depending on the initial condition. The function nlm implemented in R 
was used. 

Secondly, we also generated a speech signal based on the pole-zero coefficients 
given in [6] using a impulse train of 100 Hz, sampling frequency of 10kHz and a 

speech segment length of 40ms. We applied the method used in [7] to calculate 
the spectral envelope that acts as the input to the VB algorithm. The model was 

estimated and compared to the true transfer function and parameters. 

3 Results 

Looking at the results starting from different initial conditions (Fig. 3 and Table 1) 

it is clear that for tighter priors the algorithm converged more reliably to the global 
minimum. For the highest precision, the algorithm converges to the true solution 

most of the time in the case of a not so strong deviation from the neutral setting. 

The less stringent the prior assumption, the less reliable the algorithm converges 
towards the global optimum. For larger variation of the initial conditions the 
percentages are less but the general tendency stays the same. As a reference, the 
Gauss-Newton scheme works relatively well for the low variation, but extremely 

poor for the high variation. Therefore, the results indicate that the use of 

smoothness priors results in the dependence on the starting value. 
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Figure 3. Illustration of the reconstructed logarithmic area functions for different 

prior variances. Black lines show nasal and pharyngal tract whereas red lines mark 

the oral tract. The dashed lines show the true values. On top the prior variance 
and percentage of convergences to the true values are given. 

 
What can also be seen is that small deviations from the transfer function can yield 

large deviations from the area function. Looking at the pole-zero plot in Fig. 4 it is 
clear, that the major resonances are captured quite reliably, even for higher prior 

variances. The maximum error that occurs for the low initial variation from the 

neutral position is about 0.4 dB except in one case for the highest prior variance 
where the algorithm shows a poor fit. For large pertubation, the algorithm shows 

poor convergence for the highest three prior variances (a maximum of 12 times 
out of 200). The reason for the small changes in the transfer function is that, in 

this particular example, there are almost matched pole-zero pairs, whose position 

does not strongly affect the transfer function, but has a strong effect on the 
reflection coefficient and therefore the area function. 
Using the synthetic speech signal sample, the results show, that the algorithm 
yields a good fit for all prior settings with the error being smaller for less tight 

priors (Fig. 5). The error reported is the mean absolute deviation in dB relative to 
the envelope. 
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Figure 4. Shown are the poles (black x) and zeroes (black o) and the transfer 

functions (right panel) for a prior variance of 1. Red symbols (left panel) and red 

dotted line (right panel) mark the true values. 
 

Table 1: Percentages of convergence to the true values as a function of 
the prior variance. Also reported are the values for the Gauss-Newton method. 

 Variation  Sample Prior variance GN 
  0.05   0.1   0.2   0.5   1   2   

 low short 100 96.5 76 36.5 14.5 16.5 53 

 low long 95.5 74.5 42 18 20.5 23.5 52 
 high short 87 45.5 27.5 18.5 23 23.5 1.5 

 high long 42.5 26.5 23.5 22 24 19 5 

 
However, looking at the poles and zeroes of the original transfer function the 

tightest and most restrictive prior shows the zeroes to be closer to their true values 
than for the loose priors (Fig. 6). The estimation of the poles is comparable for all 

different settings but the area function shows stronger deviations for less tight  
priors. 

4 Discussion 

Two tube models are important models for representing nasals but also nasalized 

vowels. Here, we introduced a variational Bayesian approach in order to estimate 
the vocal tract area functions for a two tube model of nasal consonants. In 

contrast to existing procedures, the algorithm estimates all (oral, nasal, and 
pharyngal) reflection coefficients simultaneously and does not require a separate 

pole-zero estimation and is hence not dependent on which algorithm is used for 
the pole-zero estimation. The algorithm fits the log spectral envelope using zero 

mean Gaussian priors for the reflection coefficients, thereby preferring smooth 

vocal tract shapes. 



 55 

 

  
Figure 5. Shown are the estimated transfer functions for different prior variances 
as well as the true transfer function and the extracted envelope. Furthermore, the 

positions of the poles and zeroes are shown below the transfer functions. 
 

Based on the simulated transfer function, the algorithm was shown to be more 
robust against varying initial conditions compared to an unconstrained non-linear 

solver, particularly for tighter priors. As expected, tighter priors consistently lead to 
less dependence on the starting condition. Furthermore, using a noise free 

synthesized speech signal, the algorithm showed good results with respect to the 

estimated envelope for all prior settings starting from a neutral position. 
 

 
Figure 6. The left panel provides the estimated area functions for the oral part 

(dashed lines) and the pharyngal and nasal part (solid lines). The colors are coded 

as in Fig. 5. The right panel shows the poles and zeroes in the z-plane. 
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There are several issues that still need to be addressed. First, the effect of priors 

is, as is well known, sample size dependent. It is therefore unclear, what 
determines a suitable prior variance. Another important point is the statistical 

model for the error. Currently, the error is assumed to be Gaussian as well as 

indepently and identically distributed. Clearly, these are two strong assumptions, 
especially the independence, as adjacent points in a smoothed spectral envelope 

cannot be assumed to be independent. A possibility is to model the error in terms 
of an AR(n) process assuming a serial correlation across frequencies. This, 

however, requires a careful parameterization as the AR coefficientes underly 
certain stability constraints. 
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