
 107  

 

 

 

Peter Balazs, Georg Rieckh 

Oversampling Operators: Frame Representation of 
Operators  

For a numerical solution of operator equations a discretization of the 
operators is necessary. In the well-known Boundary Element Method 
(BEM) the Galerkin approach uses bases to do that. Frames are often 
easier or faster to construct than bases. Here we look at the matrix 
representation of operators using frames. We give a survey over the 
basic results, with particular focus on the invertibility of the involved 
systems. 

Keywords: Frames, matrix representation, discretization of operators, 
operator equations.  

1. Introduction 

The solution of operator equation is ubiquitous in applied mathematics. In 
computational acoustics, for example, one aims to solve operator equations 
numerically, such as equations for vibration or sound field analysis. Here the finite 
element [15] and the boundary element method [20] are widely used. One 
particular scheme to discretize the operator equations is the Galerkin method [13]. 
This corresponds to taking finite sections of the standard matrix description [14] of 

operators O  using an ONB (or biorthogonal basis) )( ke  by constructing a matrix 

M  with the entries  

.>,=<, jkkj eOeM  

But the search for bases with certain properties, like sparsity of the system 
matrix, can be a very restrictive approach. The relaxation and generalization to 
frames [9, 11] can lead to more stable and faster algorithms. Recently the 
representation of operators using frames has received some attention [1, 2, 7, 19]. 
Certain operators, named multipliers, which have a diagonal representation, are of 
special interest in mathematics [3, 5, 6] as well as acoustical applications 
[4, 12, 17, 18]. 
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In this paper we give a survey over results about the representation of 
operators using frames, in particular in connection with the invertibility of 
operators and the connected matrices. For proofs we refer to [7] and [8].  

 
2. Preliminaries and Notation 

We largely stick to the notation in [7], let us just remind the reader on the 
concept of frames.  

 
2.1. Frames 

For more details and proofs for this section refer e.g. to [10, 9]. 

A sequence ( )Kkk ∈Ψ |= ψ  is called a  frame  for the Hilbert space H , if 

constants 0>, BA  exist, such that  

          H
HH

∈∀⋅≤≤⋅ ∑ ffBffA k
k

222
>,< ψ         (1) 

Here A  is called a  lower and B  an  upper frame bound . 

A sequence )(= kψΨ  is called a  Bessel sequence  with Bessel bound B  if it 

fulfills the right inequality above. 

For a Bessel sequence )(= kψΨ  let )(: 2 KlC →Ψ H  be the  analysis operator  

( )kkffC >,<=)( ψΨ . Let H→Ψ )(: 2 KlD  be the  synthesis operator  

( )( ) kk
k

k ccD ψ⋅∑Ψ = . Let HH →Ψ :S  be the  (associated) frame operator  

kk
k

ffS ψψ ⋅∑Ψ >,<=)(
. 

For a frame )(= kψΨ  with bounds BA, , the operator C  is a bounded, 

injective operator with closed range and 
** == DDCCS  is a positive invertible 

operator satisfying HH BISAI ≤≤  and HH IASIB 111 −−− ≤≤ , where HI  denotes 

the identity on H . Even more, we can find an expansion for every member of H : 

The sequence ( ) ( )kk S ψψ 1=~=
~ −Ψ  is a frame with frame bounds 1−B , 0>1−A , 

the so called  canonical dual frame . Every H∈f  has the expansions 

kk
Kk

ff ψψ >~,<= ∑
∈

 and kk
Kk

ff ψψ ~>,<= ∑
∈

 where both sums converge 

unconditionally in H . 
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2.2 Motivation: Solving Operator Equalities 

2.2.1 A Typical Operator Equation in Acoustics 

The boundary element method (BEM) is a widely used numerical method to 
solve radiation and scattering problems [20]. Compared with finite element 
methods (FEM) [15], it has the advantage that only the surfaces of the 
radiating/reflecting objects have to be discretized with a mesh, but not the objects 
themselves or the space surrounding them, which is especially advantageous for 
problems in unbounded domains (exterior problems). 

The problem of scattering and radiation of acoustic waves from an object Ω  

with an acoustically hard reflecting (closed) Lipschitz surface Γ  in an unbounded 

domain eΩ  exterior to that object are described by the Helmholtz equation. Using 

the fundamental solution of the Helmholtz equation 
||4

=),(
||i

yx
yx

yx

−

−

π

ke
G , it can 

be given by the integral equation  

   yy dsu
G

ds
u

Gu )(
),()(

),(=)( y
n

yx
n
y

yxx
yy ∂

∂+
∂

∂− ∫∫ ΓΓ                    (2) 

    
eDuSv Ω∈+− xxx ),)(())((=                                          (3) 

 where yn  denotes the normal vector at the point y  and 
yn
y

y
∂

∂ )(
=)(

u
v . 

A commonly used method to transform Eq. (2) into a linear system of 
equations is the above-mentioned Galerkin discretization. The whole system is 

projected onto a finite-dimensional space }1=),({span= NiV iN Kxθ , where the 

iθ  form an orthogonal basis. So a finite-dimensional matrix is built for S by using 

>,=<, jk
S

kj SM θθ  and in an analogue way for D. 

The BEM can be, for example, be used for a modeling of human sound 

loclaization. The shape of the human head, torso, and pinna play an important role 

in localization of sounds. The reflections, especially at the pinna, act as a filter, 

which can be described by the head-related transfer functions. This filters can be 

estimated from a 3D-scan of the head, using BEM. However, it is not possible to 

use the BEM directly with such fine meshes because of memory and computation 

limits. Therefore, recently matrix compression techniques like the fast multipole 

method have been used to calculate HRTFs for high frequencies [16]. 
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2.2.2 Frame Approach 

Given an operator equation  

          = gfO ⋅             (4) 

we want to discretize it to find a numerical solution using a frame )(= kφΦ . For a 

given g  with coefficients >),(<=)(= kk gdd φ  and a matrix representation M  

of O  there are several algorithms to find the least square solution of  

 . = dcM ⋅                                              (5) 

To find a true solution for Eq. 4 we can now apply Φ~D  on c  . Although, in 

general c  is not in )( ΦCran  even if d  is, this is not a problem. Rephrasing Eq. 4 

we see the following:  

 .>,>=<,
~

><,<=
~

>,<= llkk
k

kk
k

gOfgOfgOf φφφφφφ ∑∑ ⇔⇔  

This gives us an algorithm for finding an approximative solution to the inverse 

operator problem gOf = .   

    1.  Define the matrix M  by >,
~

=<, lklk OM φφ .  

    2.  Find a good finite dimensional approximation NM  of M  by using the finite 

section method [14].  
    3.  Apply an algorithm like e.g. the QR factorization [21] to find a solution for 
Eq. 5.  

    4.  Synthezise with the dual frame Φ~ .  

 
 

3 Matrix Representation 

We will start with the more general case of Bessel sequences. Note that we will 

use the notation 
21

.
HH →  for the operator norm in ),( 21 HHB , i.e. the space of 

bounded operators from 1H  into 2H , to be able to distinguish between different 

operator norms.  
 

Theorem 3.1  Let )(= kψΨ  be a Bessel sequence in 1H  with bound B , 

)(= kφΦ  in 2H  with B′ .   
    1.  Let 21: HH →O  be a bounded, linear operator. Then the infinite 

matrix  
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     ( )( ) >,=<,
),(

mnnm OO φψΨΦM  

defines a bounded operator from 
2l  to 

2l  with 

.
21

22 HH
M

→→
⋅′⋅≤ OBB

ll  As an operator 
22 ll →   

     ( ) .=),(
ΨΦ

ΨΦ DOCO ooM  

This means the function ),(),(: 22
21

),( llBHHBM →ΨΦ
 is a well-defined 

bounded operator.  

    2.  On the other hand let M  be an infinite matrix defining a bounded 

operator from 
2l  to 

2l , 
( ) kki

k
i cMMc ,=∑ . Then the operator 

),( ΨΦO  

defined by  

   ( )( ) 1,
),( ,>,<= HO ∈










∑∑ΨΦ hforhMhM kjjk

jk

φψ  

is a bounded operator from 1H  to 2H  with  

    ( ) .22
21

),(

ll
MBBM

→→

ΨΦ ′⋅≤
HH

O  

 

   jikjk
jk

MCMDM ψφ ⊗⋅∑∑ΨΦ
ΨΦ

,
),( ==)( ooO

 

This means the function ),(),(: 21
22),( HHBBO →ΨΦ ll  is a well-defined 

bounded operator.  

  
Figure 1: The operator induced by a matrix M and the matrix induced by an 
operator O. 
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Definition 3.1 For an operator O  and a matrix M  as in Theorem 3.1, we call 

)(),( OΦΨM  the  matrix induced by the operator O   with respect to the 

Bessel sequences )(= kψΨ  and )(= kφΦ  and )(),( MΦΨO  the  operator 

induced by the matrix M   with respect to the Bessel sequences Ψ  and 
.Φ (See Figure 1.)  

 
For frames we can prove more properties:  

Proposition 3.2  Let )(= kψΨ  be a frame in 1H  with bounds BA, , )(= kφΦ  

in 2H  with BA ′′, . Then   

1.  ( ) ( )),()
~

,
~

(
),(

)
~

,
~

(),( ==
21

ΨΦΨΦΨΦΨΦ MIM HHB oo OO .  

And therefore for all ),( 21 HHB∈O :  

 jikkj
jk

OO ψφφψ ⊗∑ >
~

,~<=
,

 

2.  ),( ΨΦM  is injective and 
),( ΨΦO  is surjective.  

3. Let 21 = HH , then 12
)

~
,( =)( HO IdId

l

ΨΨ
 

4. Let )(= kξΞ  be any frame in 3H , and 23: HH →O  and 

 31: HH →P . Then  

    ( ) ( ) ( )( ).= ),
~

(),(),( POPO ΨΞΞΦΨΦ ⋅MMM o  

 
We can show some more connections of operators and their associated matrices:  

Proposition 3.3 Let Φ  and Ψ  be frames for 1H  and 2H  respectively, and 

ΦΨΦΨ DCG o=,  be the Gram matrix. Then the following are equivalent:   

    1.  ),( 21 HHB∈∃O  such that )(= OM M   

    2.  ),( 22 llB∈′∃M  such that ))(
~

(= MM ′OM   

    3.  ( ) ( )Φ⊆ CM ranran  and ( ) ( )MD kerker ⊆Ψ   

    4.  MGMG =~
,

~
, ΨΨΦΦ oo   

 
 

4 Invertibility 

In particular for solving operator or matrix equations the invertibility of the 
involved systems is of interest. We can show: 

Lemma 4.1  Let ),( 22 llB∈M  .   
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    1.  If ( ) MC o
Φ

Π ran  injective (on ( )ΨCran ), then )(),( MΨΦO  is injective.  

    2.  If ( ) ( )ΨΦ
Π CC M ranran |o  is surjective onto ( )ΦCran , then )(),( MΨΦO  

is surjective.  

    3.  If O  is bijective, then )(= ),( OM ΨΦM  is bijective as operator from 

( )ΨCran  onto ( )ΦCran  .  

    4.  If ( ) MC o
Φ

Π ran  is bijective as an operator from ( )ΨCran  onto 

( )ΦCran , then )(),( MΨΦO  is bijective.  

  
In particular this means that we can express the relation of the inverses of 

associated matrices and operators:  
 

Theorem 4.2 Let O  be invertible. Then )(= OM M  is invertible and 

ΦΨ
−ΨΦ

ΦΨ
−ΦΨ−

~
,

~
1),(

~
,

~
1)

~
,

~
(1 )(=)(= GOGOM ooMM  . 

Let ( ) ( )ΦΨ → CCM ranran:  be invertible. Then )(= , MO ΨΦO  is 

invertible and )(=)(= ~
,

1
,

~
,1)

~
,

~
(1

ΦΦ
−

ΨΨ
ΨΦ−ΨΦ− GMGMO OO  .  

 
5 Summary and Outlook 

We have shown some basic properties of frame representations of operators, 
in particular with regard to their invertibility.  

In the future, we are planning to investigate the relation of the operator 
representation using frames presented here with special focus on the finite section 
method and localized frames. Furthermore we will apply this concept to the 
numerical solution of the Helmholtz equation using wavelet frames. 
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