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On the Geometric Transformations and Auxetic Ma-
terials 

A new approach to obtain various architectures for auxetic foams by 
using the property of Helmholtz equation to be invariant under 
geometric transformations is described in this paper. The versatility of 
the geometric transformations is illustrated in order to obtain the 
auxetic version from the conventional foam.  
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1. Introduction 

Since 1987, when isotropic auxetic foam was manufactured for the first time, 

negative Poisson’s ratio materials have created interest for potential engineering 

applications. A feature that the auxetic materials showed compared to the other 
foams is the significant damping capacity with increase up to 16 times compared 

to the conventional foam [1-5]. All the major classes of polymers, composites, 
metals and ceramics, can exist in the auxetic version [6]. Cellular solids are two 

phase composite materials in which one phase is a solid and the other is a fluid, 

most often air. The positive Poisson’s ratio is the result of the convex shape of cell 
surfaces. By volume compression, a part of the cell surface may acquire first a 
zeroth and then negative curvature. When the number of such inverted cells 
dominates, compressibility of the material rises till the appearance of the negative 

Poisson’s ratio [7]. Fig.1 shows the simplest 2D lattice structures for closed-cell 
solids: (a) square structure, (b) rectangle structure, (c) regular hexagonal struc-

ture, d) triangular structure and d) irregular structure. Fig.2 illustrates models of 

auxetic structures obtained from aforementioned materials by appearance of the 
negative Poisson’s ratio: a), b) re-entrant honeycomb network, c) Shilko and 

Konyok model [7] of the inverted closed-cell foam, and d) re-entrant regular array 
of rectangular nodules interconnected by fibrils [8].  
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The conventional foam exhibits pores with average diameter around 1mm 
while the auxetic foam has average diameter possible down to a few micrometers 

or down to a few nanometers. 

 
Figure 1. Regular 2D cellular solids. 

 

 
Figure 2. Model structures of the inverted closed-cell foam. 
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In this paper, a new technique for transforming the conventional foams into 
auxetic foams is proposed. The scope is to transform conventional foam which oc-

cupies the disk 2r R≤  into auxetic material which fills the annulus 1 2R r R≤ ≤ . The 

new material is inhomogeneous and anisotropic.  
The geometric transformations cannot be applied to equations which are not 

invariant under coordinate transformations and, consequently, if cloaking exists for 

such equations (for example the elasticity equations), it would be of a different 
nature from acoustic and electromagnetic [9].  

The touchstone of our technique is that the governing equations of the wave 
propagation through non-auxetic foams are invariant under geometric transforma-

tions, more precisely, the equations simplify into the Helmholtz equation [10]. So, 
the geometric transformations are used in order to obtain various inhomogeneous 

and anisotropic auxetic materials.  

2. Geometric transfomations 

A finite size object surrounded by a coating consisting of a specially designed 
metamaterial would become invisible for electromagnetic waves at any frequency 

[9]. The idea is that the sound sees the space differently [11]. For the sound, the 
concept of distance is modified by the acoustic properties of the regions through 

which the sound travels. In geometrical acoustics, the idea of the acoustical path 

when travelling an infinitesimal distance sd , is the corresponding acoustical path 

length -1c sd , where 1 /c− = ρ κ  with ρ  is the fluid density and κ  is the 
compression modulus of the fluid. For example, the 3D equation for the pressure 

waves propagating in a bounded fluid region 3Ω ⊂R  is the Helmholtz equation 

2
1( ) 0p p− ω∇ ⋅ ρ ∇ + =

κ
,                                          (1) 

where p  is the pressure, ρ  is the rank-2 tensor of the fluid density, κ is the 

compression modulus of the fluid, and ω is the wave frequency.   
     Geometric transformations applied to certain types of elastodynamic waves in 
structural mechanics received less attention, since the Navier equations do not 

usually retain their form under geometric changes [12]. For example, the in-plane 

propagation of time-harmonic elastic waves is governed by the Navier equations 

2: 0C U U b∇ ⋅ ∇ + ρω + = ,                                        (2) 

where u  is the displacement, ρ  the density, C  the 4th-order material tensor of 

the linear elastic material and ( )b x  represents the spatial distribution of a simple 

harmonic body force ˆ( , ) ( )exp( )b x t b x t= ωi , with the wave-frequency and t  the 

time. The Navier equations (2) retain their form under the transformation [10]  
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where 0r  and 1r  are the inner and outer radii of the circular domain, respectively. 

Let us consider the geometric transformation from the coordinate system 
( , , )x y z′ ′ ′  of the compressed space to the original coordinate system ( , , )x y z , given 

by ( , , )x x y z′ ′ ′ , ( , , )y x y z′ ′ ′  and ( , , )z x y z′ ′ ′ . The change of coordinates is 

characterized by the transformation of the differentials through the Jacobian xxJ ′of 

this transformation, i.e. 

xx

x x

y J y

z z
′

′   
   ′=   
   ′   

d d

d d

d d

,  
( , , )

( , , )xx

x y z
J

x y z′
∂=

′ ′ ′∂
.                             (4) 

     From the geometrical point of view, the change of coordinates implies that, in 
the transformed region, one can work with an associated metric tensor [13, 14] 

det( )
xx xx

xx

J J
T

J
′ ′

′

=
T

.                                                 (5) 

     In terms of the material parameters, one can replace the material from the 

original domain (homogeneous and isotropic) by an equivalent compressed one 
that is inhomogeneous (its characteristics depend on the spherical ( , , )r′ ′ ′θ φ  

coordinates) and anisotropic (described by a tensor), and whose properties, in 

terms of x xJ ′ , are given by 

1 det( )x x x x x xJ J J− −
′ ′ ′′ρ = ⋅ρ⋅ ⋅T ,  det( )x xJ ′′κ = κ ,                         (6) 

or, equivalently, in terms of xxJ ′  

det( )
xx x x

xx

J J

J
′ ′

′

⋅ρ⋅′ρ =
T

, 
det( )xxJ ′

κ′κ = .                              (7) 

Here, ′ρ  is a second order tensor. When the Jacobian matrix is diagonal, (6) and 

(7) can be more easily written. Multiplying (1) by a test function ϕ  and integrating 
by parts, one obtains 

( ) ( )1 2 1
( , , ) ( , , ) 0x y z x y z p V p V− −

Ω

− ∇ ϕ⋅ρ ∇ + ω κ ϕ =∫ ∫d d .                       (8) 

In (8) the surface integral, corresponding to a Neumann integral over the 

boundary ∂Ω , is zero. By applying the coordinate transformation 

( , , ) ( , , )x y z x y z′ ′ ′→  to (8) and using (4), one obtains 
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( ) ( )1 2 1
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in terms of  xxJ ′ , and 
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 ρ  κ
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T
T

d d
det( )

,     (10) 

in terms of x xJ ′ . 

3. Formulation of the problem 

     The geometric transformation may be linear or nonlinear. A linear geometric 
transformation (4) which maps the disk 2r R≤  into an annulus 1 2R r R≤ ≤  is given 

by [9] 

2 1
1

2

R R
r R r

R

−′ = + ,  20 r R≤ ≤ , 

′θ = θ , 0 2≤ θ ≤ π ,                                      (11) 

3 3x x′ = ,   3 Rx ∈ , 

where r′ , ′θ , 3x′  are radially contracted cylindrical coordinates r , θ , 3x . The 

Cartesian basis 1 2 3( , , )x x x is defined as 1 cosx r= θ , 2 sinx r= θ . The Jacobean of 
the transformation from polar to stretched polar coordinates is given 

by 3

3

( , , )

( , , )rr

r x
J

r x
′

∂ θ
=

′ ′ ′∂ θ
. In the stretched space, the associated metric tensor is given 

by (5) 

T

det( )
rr rr

rr

J J
T

J
′ ′

′

= .                                     (12) 

          Once the above geometric transforms are written, let us formulate the 

problem to be solved in this paper. Let us suppose that the original domain is a 

cylinder of radius 2R and length l . This domain is filled with conventional non-
auxetic cellular foam. The spatial compression is obtained by applying the 
geometric transformation (11). The transformed domain is a shell cylinder of 

internal and external radii 1R  and 2R , respectively, and the length l′ .  
     We suppose that the material is a micropolar solid with chiral effects, i.e. a 

noncentrosymmetric material. The micropolar and classical theories of elasticity are 
continuum theories, which make no reference to atoms or other structural features 
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of the material, which is described. Elasticity theory represents more than an ana-
lytical description of the phenomenological behavior since it can be derived as a 

first approximation of the interaction between atoms in the solid [16. 17].  

     4. Results 

     The original material is conventional closed-cell polyurethane foam with 

convρ = 27 3kg/m density and Poisson’s ratio at tensile test tensν = 0.47 and the 
compressive test compν = 0.27. The cylindrical specimen has 2R = 15mm initial 
radius and l = 170mm initial length.  We must say that the condition of a positive 
Young’s modulus and 1 0.5− < ν <  corresponds to the usual range of properties for 

stability of the material. The existence of negative material constants (shear 

modulus, bulk modulus, stiffness) is also permitted [18,19].  

The Poisson’s ratio yxν = ν (for tensile and compressive tests) was calculated 

as the negative ratio between the radial and longitudinal strains using a best fit to 

the strain-strain graph 

x
yx

y

εν = −
ε

.                                               (13) 

 
         Figure 3. Poisson’s ratio versus compressive strain for conventional and 
auxetic foams. 
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The most important physical parameter to dominate the negative Poisson’s ra-

tio transformation is the compression ratio 
2 2

2 1
2
2

( )R R l

R l

′ ′ ′−ϑ = , where prime denotes 

the final parameters. 

         

 

                          Figure 4. Transformed domains. 

Fig.3 shows the variation of the Poisoon’s ratio with respect to 1− ϑ  (equiva-
lent to the compressive strain) for conventional foam (the upper curve) and 
auxetic foam (the lower curve) respectively. We observe that the conventional 

foam becomes auxetic ( 0.15 0v− < < ) for0.55 1 0.77< − ϑ < , or 0.23 0.45< ϑ < . It 

is very interesting to see that the auxetic foam is changing the sign for its Pois-

son’s ratio for0.46 1> − ϑ .  
It is of interest to underline that the results provides an overall agreement 

with the experimental values for the auxetic foam [7, 20].  

The initial domain with 2R = 15mm and l = 170mm is transformed into a shell 
cylinder with l′ = 100mm, 2R′ = 15mm and 14.415mm 1R′< < 14.7mm. The trans-
formed annulus domains are presented in Fig. 4, for ϑ = 0.25, 0.26, 0.3 and 0.4.   
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         Figure 5. Variation of the Young’s modulus with respect to radial 
coordinate. 
                       

The variation of the Young’s modulus with respect to radial coordinate 

1 2R r R≤ ≤  is presented in Fig.5 for ϑ = 0.25, 0.26, 0.3 and 0.4 (the corresponding 
thicknesses for the annulus 1 2R r R≤ ≤  are 0.322mm, 0.34mm, 0.3888 and 0.519 

respectively).  

5. Conclusion 

A new technique for transforming the conventional foams into auxetic foams is 
proposed in this paper by exploiting the property of the governing equations to be 

written in a covariant form such that the metric is only involved in the material 
parameters. The geometric transformations lead to material properties that are, if 

not impossible to obtain, at least challenging for the auxetic foams manufacture.  

Acknowledgement: This research was financially supported by the National 

Authority for Scientific Research (ANCS, UEFISCSU), Romania, through PN2 Project 

ID_1391/2008.  

 



 81 

References 

[1] Scarpa, F., Pastorino, P., Garelli, A., Patsias, S., Ruzzene, M., Auxetic 
compliant flexible PU foams: static and dynamic properties, Phys Stat So-
lid B, 242(3), 2004, 681–694. 

[2] Chiroiu, V., Munteanu, L., Dumitriu, D., Beldiman, M., Secara, C., On 
the architecture of a new cellular elastic material, Proceedings of the 
Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, 
Information Science, 9(2), 2008, 105–115.  

[3] Munteanu, L., Chiroiu, V., Dumitriu, D., Beldiman, M., On the charac-
terization of auxetic composites, Proceedings of the Romanian Academy, 
Series A: Mathematics, Physics, Technical Sciences, Information Science, 

Springer-Verlag (eds. N.Mastorakis, V.Mladenov), 9(1), 2008, 33–40.   
[4] Donescu, Şt., Chiroiu, V., Munteanu, L., On the Young’s modulus of 
an auxetic composite structure, Mechanics Research Communications, 36 
(3), 2009, 294–301.  

[5] Evans K.E.,  Auxetic polymers: a new range of materials, Endeavour 
New Ser, 15, 1991, 170–174. 
[6] Mihailescu, M., Chiroiu, V., Advanced mechanics on shells and intelli-
gent structures, Publishing House of the Romanian Academy, 2005. 
[7] Shilko, S., Konyok, D., Numerical and experimental study of auxetic 
closed-cell foams, Computational methods in Science and Technology, 
10(2), 2004, 197–202. 
[8] Evans, K.E., Alderson, A., Auxetic materials: Functional materials and 
structures from lateral thinking, Advanced materials, 12(9), 2000, 617-
628. 

[9] Pendry, J.B., Shurig, D., Smith, D.R., Controlling electromagnetic 
fields, Science, 312, 2006, 1780–1782. 
[10] Brun, M., Guenneau, S., Movchan, A.B., Achieving control of in-plane 
elastic waves, Applied Physics Letters, 94, 2009, 061903. 
[11] Dupont, G., Farhat, M., Diatta, A., Guenneau, S., Enoch, S., 
Numerical analysis of three-dimensional acoustic cloaks and carpets, doi: 
abs/1103, 2011, 1081. 
[12] Cummer, S.A., Popa, B.I., Schurig, D., Smith, D.R., Pendry, J., 

Rahm, M., Starr, A., Scattering theory derivation of a 3D acoustic cloaking 
shell, Physical Review Letters, 100, 2008, 024301. 
[13] Guenneau, S., McPhedran, R.C., Enoch, S., Movchan, A.B., Farhat, 
M., Nicorovici, N.A., The colours of cloaks, Journal of Optics, 13(2), 2011, 
024014. 

[14] Milton, G.W., Nicorovici, N.A., On the cloaking effects associated 
with anomalous localized resonance, Proc. Roy. Soc., A 462, 2006, 3027–
3059. 



 82 

[15] Qiu, C.W., Hu, L., Zhang, B., Wu, B.I., Johnson, S.G., Joannopoulos, 
J.D., Spherical cloaking using nonlinear transformations for improved 
segmentation into concentric isotropic coatings,  Optics Express, 17(16), 
2009, 13467–13478. 

[16] Cosserat, E. and F., Theorie des Corps Deformables, Hermann et 
Fils, Paris, 1909. 
[17] Chiroiu, V., Munteanu, L., Gliozzi, A.S., Application of Cosserat the-
ory to the modeling of reinforced carbon nanotube beams, CMC: Com-
puters, Materials & Continua, 19(1), 2010, 1–16. 

[18] Teodorescu, P.P., Munteanu, L., Chiroiu, V., On the wave 
propagation in chiral media, New Trends in Continuum Mechanics, Theta 
Series in Advanced Mathematics (ed. M.Mihailescu-Suliciu), Editura 

Thetha Foundation, Bucharest, 2005, 303–310. 
[19] Teodorescu, P.P., Badea, T., Munteanu, L., Onisoru, J., On the wave 
propagation in composite materials with a negative stiffness phase, New 
Trends in Continuum Mechanics, Theta Series in Advanced Mathematics 

(ed. M.Mihailescu-Suliciu), Editura Thetha Foundation, Bucharest, 2005, 
295–302. 
[20] Bezazi, A., Scarpa, F., Mechanical behaviour of conventional and 
negative Poisson’s ratio thermoplastic polyurethane foams under 
compressive cyclic loading, International Journal of Fatique, 29, 2007, 
922–930. 

Addresses: 

• Dr. Veturia Chiroiu, Institute of Solid Mechanics, Romanian Academy, 

Ctin Mille 15, 010141 Bucharest, veturiachiroiu@yahoo.com 

• Prof. Dr. Eng. Petre P.Teodoorescu, University of Bucharest, Mathemat-

ics Department, petre_teodorescu@hotmail.com 

• Dr. Ligia Munteanu, Institute of Solid Mechanics, Romanian Academy, 

Ctin Mille 15, 010141 Bucharest, ligia_munteanu@hotmail.com 
  


