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Calculation Method for the Displacements of Cross 
Sections for Unsupported Straight Bars Subjected to 

Axial or Torsion Loads 

This paper discusses a method for the determination of the 
displacements of the cross sections for unsupported straight bars 
subjected to axial loads – with forces or moments. The displacements 
of the cross sections are determined against their initial position, as 
well as against the section or sections that do not displace during static 
loading. The section or sections that do not displace against itself or 
themselves during the tensile-compression load or during the static 
torsion load are also determined with the help of this method. 

Keywords: displacement, deformation, unsupported bars, cross sec-
tions 

1. Introduction 

The cross sections of the straight bars subjected to axial forces displace, and 
the ones subjected to axial moments rotate in relation to their initial position prior 
to the loading. For the straight bars, supported in different points and axially 
loaded with forces or moments, the final positions of the cross sections can be 
determined if we take as a benchmark a section situated in one of these supports 
[1]. For the corresponding support, we know the fact that the displacement in that 
point is null. The finite element analysis software operates in the same way, and 
the conditions for contour displacement are boundary conditions on the basis of 
which the system of equations is verified. Normally, for unsupported bars 
subjected to axial loads with forces or moments, we consider one of the ends as 
being fixed and we draw a conventional diagram of the displacements, meant to 
establish the relative displacements between various sections of the bar. Thus, we 
can calculate the deformations in an error free modality, and then the stresses that 
are established in different points of the bar following loads [2]. On the basis of 
the method presented in this paper, we will be able to determine the real 
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displacements (rotations) of the cross sections of the unsupported straight bars, 
subjected to axial loads (with forces or moments). For example, the determination 
of the real value for the rotation of cross sections is necessary for unsupported 
shafts, subjected to moments of torsion and on which various elements of 
transmission and/or of coupling are mounted [3]. 
 

2. Calculation ratios for the displacements of cross sections 

 The calculation of the displacements of the cross sections of straight bars is 
done by taking into consideration certain hypotheses [4]: 

- the material these bars are made of is considered homogenous and it has 
isotropic behavior when subjected to loading;  

- the applied load introduces deformations only in the elastic field;  
- we consider that Bernoulli’s hypothesis, according to which a plane and 

perpendicular section on the axis of the bar before bending will remain plane and 
perpendicular on the axis of the bar after the bending as well, is valid.  
 Let us consider a straight bar, with a constant section, fixed at one end and 
loaded at the other end with a force or moment sensed according to the 
geometrical axis of the bar, fig. 1.  

 
 

Figure 1. Straight bar subjected to axial load 
 
 Under the action of the load N, the bar bends, and, consequently, the various 
cross sections displace against the initial position. Thus, if the axial load is a force, 
the cross sections of the bar will displace and the bar will elongate by the quantity 
δtot, fig. 1.a. If the axial load is a moment, the cross sections of the bar will rotate 
against their initial position, and the end of the bar will rotate by the quantity δtot.  
 From hereon, we will use the same notation, respectively δ, and the same 
notion, respectively displacement, for the displacements or rotations of the cross 
sections. The bar in figure 1a is made up of a single region (zone) on which we 
have the same variation law of sectional stresses N(x), fig. 1c. Hence, we know 
that the total displacement of the bar subjected to tensile or torsion stress will be 
given by the relation [5]:  
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where N(x)=F represents the stress of the section x € [0, l] whereas R(x) 
represents the rigidity to the respective stress and is given by: 
- for tensile-compression stress: 

R(x) = E�A(x); 
- for torsion stress 

R(x) = G�Ip(x); 
where: 
- E and G represent the longitudinal, respectively the cross coefficient of elasticity; 
- A(x) is the area of the cross section of the bar, noted with x;  
- Ip(x) represents the polar moment of inertia of the same section.  
 The displacement of a cross section situated at the distance x from the fixed 
end of the bar, fig. 1c, will be given by the relation:  
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or calculated in relation to the free end  
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with x, x1 and x2 as in figure 1a. 
 Thus, the diagram of the displacements of the cross sections for the straight 
bar in figure 1a, subjected to tensile-compression stress or to torsion stress, 
resembles the one presented in figure 1b.  
 Various regions of the bar change when, along its length, either the variation 
law of the bar section or the variation law of the stress or both change. Hence, the 
displacement of a section of the bar will be given by the relation:  
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where xi and x1i are measured starting from the section i, δi representing the 
displacement of the same section. 
 

2. The conventional diagrams of displacements 

 As we have already shown, in order to draw the conventional diagrams of the 
displacements δ of the cross sections for the straight bars subjected to tensile-
compression stress or to torsion stress, it is necessary to know the displacement of 
a previous section. For the bars fixed in a specific section, we consider the 
displacement of that section (δ=0) as the reference. Hence, as shown in fig. 1b, 
we can draw the diagram of the displacements of the cross sections on the whole 
bar. For the free bars, where the displacement is not prevented in any of the 
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sections, we cannot draw the diagram of the displacements based on the 
procedure described above because there are no initially known displacements of 
any of the sections. Nevertheless, in these cases we can calculate the relative 
displacements of the sections by arbitrarily considering one end of the bar as being 
fixed (δ1=0), and by reporting all the other displacements in relation to this fixed 
end.  
 Let us consider the straight bar in fig. 2a, subjected to tensile-compression 
stress or to torsion stress, for which none of the sections is prevented from 
displacing. Consequently, we cannot know from the very beginning the 
displacement of any of the cross sections. Thus, we cannot draw a real diagram of 
the displacements, representing the displacements of the cross sections either 
against their initial position or against a bar section that does not displace during 
the stress from the zero load to the maximum load.  

 
Figure 2. Axial load displacement diagram 

 
 For the bar in figure 2a we can draw two “conventional” diagrams of the 
displacements, considering first of all the end 1 as being fixed (δ1=0) and then the 
end n as being fixed (δn=0). In figure 2b these diagrams are noted with d1, 

respectively dn.  
 We may easily notice that the two conventional diagrams will intersect in at 
least one point. This statement is true for the following reasons:  

- for each of the two diagrams, the starting point is “0”, taken from the left, 
respectively from the right end of the bar; 

- when the end 1 is fixed, the end n will displace by the quantity  δn = ∆ltot, 
where  ∆ltot is the total elongation of the bar; 

- when the end n is fixed, the end 1 will displace by the quantity δ1= ∆ltot. 
Thus, we will have: δ1 = δn = ∆ltot. 
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 Consequently, if the trajectory followed by the two conventional diagrams is 
situated between the same values, 0 and ∆ltot, one starting from the right, and the 
other from the left, the two diagrams will definitely intersect, at least in one point.  
 Let us suppose that one of the intersection points of the two diagrams is 
situated within the region (i, i+1) of the bar, at the distance xi from the section i, 
figure 1. If we consider that the end 1 is fixed, and respectively that the end n is 
fixed, the displacement of the section xi , in agreement with relation (4), will be in 
the two cases: 
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where δi-1,i represents the relative displacement between the sections i-1 and i, 
being equal to the elongation (rotation) of the bar section (i-1,i). 
 If we suppose that the two conventional diagrams intersect in section xi, we 
will have:  
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and consequently: 
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4. Calculation of the displacements of the ends of the freely 
deformable bar 

 In the real case, where none of the sections of the bar is prevented from 
displacing following the deformation of the bar, its ends will displace by the 
quantities δ1 and δn. Consequently, given the relation (3), the real displacement of 
the same section xi, calculated from the left or from the right end of the bar, will 
be written under the form:  
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 In relation (8), the first equality is written when we consider the end 1 as 
being fixed, whereas, for the second equality, the n end is considered to be fixed.  
 According to relation (7) we consider that the terms that appear between 
brackets in the relation (8) are equal. Hence, for the straight bar which suffers a 
free deformation when subjected to static axial loading, we can write the relation: 

δ1=δn        (9) 
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 From the relation (9) we can draw a very important conclusion, namely that, 
for a bar which freely deforms in all sections, the displacements of the ends of this 
bar are equal. We already know that, as concerns the bar with a fixed section, as 
well as the freely deformable bar, the relation below is valid:  

δ1+δn=δ1n=δtot      (10) 
where: 
- δ1 and  δn represent the displacements of the free ends of the unsupported 

bar;  
- δ1n represents the displacement of one end of the bar when the other end is 

fixed; 
- δtot represents the total elongation of the bar when one of the ends is fixed. 

 Given the relations (9) and (10), we will have  
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where the total elongation of the bar, δtot, can be determined by means of 
calculation or by drawing a conventional diagram.  
 Thus, the real displacement of the section xi on the freely deformable bar, the 
section at the intersection of the conventional diagrams, will be given by the 
relation:  
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where the equality: 
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is obvious because of the fact that each of the terms represents the deformation of 
the same bar segment, comprised between sections xi and li, fig. 2a. 
 If, in relation (12) we consider the equalities given by the relations (13) and 
(7), we will obtain: 

0)(
Real =

i
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 Therefore, when none of the cross sections of a straight bar is prevented from 
displacing under the action of static axial loading, there will be at least one section 
that will not displace against its initial position. This section is situated next to the 
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intersection of the “conventional” diagrams of the displacement that are drawn by 
considering, in turn, the ends of the bar as being fixed. On the other hand, the 
relations (9), (5) and (11) lead to the following equalities: 

2
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where: 

- 
Real

1δ  and 
Real

nδ  are the real displacements of the ends of the freely 

deformable bar; 
- δ1(xi) and  δn(xi) represent the displacement of the section xi within the 

“conventional” diagram; 
- δtot represent the total elongation of a bar, which can be determined on the 

basis of a conventional diagram.   
 From the relation (15) we can draw the following conclusions: 

- the real displacements of the ends of the freely deformable bar, subjected to 
axial loading, are equal between them, as well as equal to the displacement of the 

section xi that does not displace ( 0Real

)( =
ix

δ ) against its initial position.  

- the same displacements of the ends of the bar are equal to half of the total 
displacement (δtot) which can be determined on the basis of a conventional 
diagram. 
 

5. The real diagram of displacements 

 We will continue by presenting the work modality for the drawing of the real 
diagram of the displacements of cross sections for a straight bar, without 
deformation restrictions, subjected to tensile-compression stress or to torsion 
stress, figure 3a.  
 Given the already discussed aspects, the drawing of the real diagram of the 
displacements involves the following steps:  

1 – we trace a single “conventional” diagram of the displacements, 
considering, for example, the left end as the fixed one;  

2 – we trace a new abscissa in relation to the first one, at the distance 
2

tot
δ

, 

fig. 3b; 
3 – the intersection point or points of the new abscissa with the conventional 

diagram will be situated next to the section of the bar that does not displace 
against its initial position;  

4 – a movement direction is marked on the conventional diagram, from zero 
to δtot; 

5 – on the same conventional diagram we mark a new movement direction, 
this time starting from one of the sections that do not displace (intersection with 
the new abscissa) towards the ends of the bar;  
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6 – when the direction marked at point 4 does not coincide to the direction 
marked at point 5, the conventional diagram must be reversed on the other side of 
the new abscissa, figure 3b.  
 Thus, we obtain the real diagram of the displacements, which, in figure 3b, is 
represented above the new abscissa x.  

 
 

Figure 3. Example concerning the drawing modality of the real diagram for the 
displacements of an axially loaded unsupported straight bar 

  
 From this example we may notice that the section that does not displace 
against its initial position when the axial load increases from zero to the maximum 

load is situated at the distance l
2

2
 in relation to the left end of the bar. We may 

also notice that the new abscissa x intersects the conventional diagrams at the 

distance 
2

δtot  where 
AE2

Fl
δ tot = , A being the area of the cross section of the bar. 

The displacements of the free ends of the bars have the same values, 

respectively
AE4

Fl
δδ 21 == .  

 As we may notice, in order to draw the final diagram of the displacements, if 
we have the conventional diagram, we must act in the following manner:  

- we draw the movement direction of the conventional diagram from  point 1 
(considered fixed) to point 2 (considered free).  

- we draw another movement direction of the same diagram, starting from 
the intersection with the new abscissa x.  

- where the two directions do not coincide, the diagram is reversed in relation 
to abscissa x.  
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6. Analytical calculation of the position of the non-displaced 
section. 

 In this paragraph we will analytically determine the position of the section that 
does not displace against its initial position during the application of the load from 
zero to the maximum value. For comparison, this calculation will be performed for 
the example in figure 3a. As we have previously noticed, the displacements of the 
free ends of the bars are equal, δ1=δ2. Consequently, if the section situated at the 
distance l1 from the left end does not displace, we obtain the equality ∆l1=∆l2 in 
which ∆l1 and ∆l2 represent the elongations of the sections 1-k and 2-k. These 
elongations can be calculated with the help of the known relations.  
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where N(x1) and N(x2) are the sectional stresses on the sections 1-k and 2-k. 
These can be written under the form: 
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Thus, for the elongations of the bar sections 1-k and 2-k, we will have the 
relations: 

lR

lF
dx
lxR

Fx
l

l

⋅
⋅

=
⋅

=∆ ∫ 2)(

2

1

0
1

1

1
1

1

      (20) 

( )222
0

2

2

2

2 2
2)(

2

lll
lR

F
dx

xR

l

xF
F

l
l

−⋅
⋅

=

⋅
−

=∆ ∫     (21) 

where  R(x1)= R(x2)= R=const.  for the analyzed case. 
 By putting the equal sign between the relations (20) and (21) we will obtain: 
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 Given the obvious relation l1+l2=l, from relation (22) we obtain: 
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And thus we get: 
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value which corresponds to the value that was graphically determined in the 
previous paragraph.  
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4. Conclusions  

 Given the fact that, most of the times, for axially loaded bars, we are 
interested in deformations and strains, for a freely deformable bar we can draw a 
conventional diagram by arbitrarily considering one of the ends as being fixed and 
by thus determining the relative displacements between two sections.  

There are, nevertheless, practical cases in which we have to determine the 
real position of the cross sections for a straight bar subjected to static axial loads 
when the bar is not supported in any points. This paper describes a method for the 
determination of this position. On the basis of this method we also determine the 
section or the sections that do not displace during the static axial loading, with the 
load increasing from zero to the maximum value. The method is a simpler one, 
relying on the drawing of a “conventional” diagram by considering one of the ends 
of the bar as being fixed. Then, a new abscissa is drawn at δtot/2 in relation to the 
first abscissa, the intersection point or points for the new abscissa with the 
conventional diagram representing the position of the section or of the sections 
that do not displace against their initial position. Moreover, we must perform a 
swinging of one portion of the “conventional” diagram in relation to the new 
abscissa, as shown in the previous paragraphs. Thus we obtain the real diagram of 
the displacements of the cross sections, as well as the position of the sections that 
do not displace during the loading. It is obvious that, as concerns the freely 
deformable straight bars subjected to axial loads, these sections do exist and are 
emphasized with the help of this method. 
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