
 45 

 

 

 

Petre P. Teodorescu, Veturia Chiroiu, Ligia Munteanu, Valeria 
MoşneguŃu 

On the Nanoindentation of the Carbon Nanotubes 

A new inverse approach is proposed in this paper, which combines 
elements of nonlocal theory and molecular mechanics, based on the 
experimental results available in the nanoindentation literature. The 
effect of the inlayer van der Waals atomistic interactions for carbon 
nanotubes with multiple walls (MWCNT) is included by means of the 
Brenner -Tersoff potential and experimental results. The neighboring 
walls of MWCNT are coupled through van der Waals interactions, and 
the shell buckling would initiate in the outermost shell, when nanotubes 
are short.  The nanoindentation technique is simulated for the axially 
compressed of individual nanotubes, in order to evaluate the load-
unloaded-displacement, the curve critical buckling and the appropriate 
values for local Lamé constants. 

Keywords: Nanoindentation, carbon nanotubes, buckling, Brenner-
Tersoff potential, van der Waals force, kink. 

1. Introduction 

Indentation is a testing method which received considerable recent interest in 
the mechanical characterisation of materials [1]-[4]. The goal of such testing is to 
extract elastic modulus and hardness of the specimen material from readings of 
indenter load and depth of penetration. The forces involved are usually in the mil-
linewtons ( 310− N) range and are measured with a resolution of nanonewtons 

( 910− N). The depths of penetration are on the order of microns with a resolution 

of less than a nanometre ( 910− N). The size dependence of nanoindentation is still 
an open problem [5]. At the micron or nanometer scale, the size effect of 
deformation is inherent [6], [7], and similarly indentation at the nano/microscale 
also displays a strong size effect. The spreading of intershell distances and the 
inlayer van der Waals interactions in MWCNTs depend on the tube size [8]. With 
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different dimensions and geometries of MWCNTs, the mechanical properties are 
also size dependent [9], [10]. 

There are many works reported in the CNTs modeling which are extensively 
reviewed by Srivastava and Atluri [11]. The long-range nanoindentation response 
of MWCNTs was studied by a new method combining features of nonlocal theory 
and molecular mechanics by Munteanu and Chiroiu [12]. An inverse problem in the 
theory of shell buckling of MWCNTs is proposed in this paper based on [12] and 
[13]-[15] with the emphasis on the simulation of the nanoindentation technique. 

2. Theory 

Advances in multi-scale computational methods for nanostructures are made 
by coupling the continuum-models with more-realistic details at quantum and at-
omistic scales [16]. The model we propose in this paper directly couples a region 
described with full atomistic detail to a surrounding region modelled using contin-
uum concepts. Current parallel supercomputer simulations can manipulate about 

910  atoms using a simple empirical potential, amounting to a volume of less than 
1 cubic micron. But attaining the scale needed for typical polycrystals, at least 

610 cubic microns, is very difficult to be realized. Atomistic methods must be used 
in conjunction with larger scale methods through multi-scale modelling methods. 
In the atomistic-continuum coupling a very important item is determination of the 
total potential energy of a system as a function of the degrees of freedom, which 
can be atom positions. 

Continuum mechanics assumes that, for a material, there exists a strain en-
ergy density functional W , and the energy in a volume dV around point X  is 

( )dW X V . The overall potential energy of the material is then an integral over the 

volume Ω  of the body 

( )dcE W X V
Ω

= ∫ .                                            (1) 

If X  is a point in the undeformed state of the body, by some applied forces 
or imposed displacements on the body, the point X  moves to the point x . The 
displacement referenced to the original state of the body ( )u X x X= − . The dif-

ference d dx X− describes the local de-formation with reference to X . The de-
formation gradient is 

d
( ) ( )

d

x
F X I u X

X
= = + ∇ ,                                      (2) 

where ∇  is the gradient with reference to X . The Lagrangian strain is given by 

 ( ) / 2TE F F I= − ,                                            (3) 

which becomes ( ( ) ) / 2Tu uε = ∇ + ∇ , for the infinitesimal deformations. 
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To determine the equilibrium strain field for applied forces and displacements 
in the body, the energy cE  must be minimized. The locality of ( )W X implies that 

the strain energy density at X  is equal to the strain energy per unit volume of an 
infinite perfect crystal deformed according to a homogeneous deformation gradient 

( )F X . 

The locality of ( )W X is a key assumption for constructing the coupled meth-

ods, because the real atomistic energy is nonlocal. When F∇  is large, the nonlo-
cality plays an important role and the local ( )W X  cannot describe this nonlocality.  

3. Inverse problem 

The coupling between the atomistic region and the continuum one is realized 
by an inverse problem which models the transition between these regions. The 
inverse problem of the coupled atomistic-continuum method contains two very im-
portant assumptions. The first assumption refers to the expression of ( )W X  for 

the carbon nanotube. The ( )W X  is derived by using the assumption that the po-
tential functional Σ   

]

0
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2

(| |) ( ) ( ) d ( ),

kk ll

V
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e e
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 ′ ′ ′ ′Σ = Σ + λ − +

′ ′ ′ ′ ′ ′+µ −

∫ x x x x

x x x x x

                        (4) 

is identified with the Brenner-Tersoff potential [17], [18]. In (4), λ , µ  are the 

classical Lamé elastic constants, and  ′λ  and ′µ  are the nonlocal Lamé elastic 

functions which depend on | |′ −x x , Σ  is the potential functional over all 

argument functions of ′x  covering the entire body, defined by 0 ,( , )k
′ ′ρ ψ = Σ x x , 

with ψ = ε − θη  the free energy functional, 0Σ  refers to the value in the natural 

state, and 0ρ the density in the natural state,  klδ  is the Kronecher delta, kle  is 

the strain tensor of the linear theory , ,2 kl k l l ke u u= + and ku  the components of 

the displacement vector.  
The nonlocal Lamé elastic functions (| |)′ ′λ −x x and (| |)′ ′µ −x x are influ-

ence functions, which are positive decreasing functions of | |′ −x x , 

(| |) (| |)′ ′ ′λ − = α − λx x x x , 

                   (| |) (| |)′ ′µ − = α − µx x x x ,                                 (5) 
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The potential functional Σ  is expressed in terms of the repulsive potential 

( )| |RV ′ −x x , the attractive potential (| |)AV ′ −x x and the Lennard-Jones poten-

tial (| |)dvwV ′ −x x  

 [ ]0 d ( )R A vdw

V

V V V v
−

′ ′Σ = Σ + − +∫ x
σ

γ β ,                        (6) 

with γ  and β , the coupling factors, and 
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where 6.32eVeD = , 1.29S = , %ε  the energy at the minimum in vdwV , and 0r is 

the distance between two atoms at which 0vdwV = . For carbon atoms, 

0 =ε 0.0556 kcal/mol, 0r =  3.4 Å. The function (| |)cf ′ −x x is an optional cut-off 
function and it may be used to smoothly limit the interactions in (6) within a pre-
defined range of neighboring atoms, effectively defined by radii 1 1.70R = Ǻ and 

2 2.00R = Ǻ [19]. 

The second assumption of the inverse problem is the simulation of the 
nanoindentation test used in [20] with referring to a commercial nanoindenter with 
extremely fine force and displacement resolution ( ≈300nm and ≈ 1 nm, 
respectively). A Berkovich three-sided py-ramidal tip was used in the current 
investigation, with a nominal tip radius of 100 nm. The study case is an axially 
compressed MWCN of diameter d = 50nm, length L = 100nm. The nanotubes 
used in this study has 15 walls, the outer radius is outerR = 25 nm, and inner radius 

is innerR = 20 nm. The projected contact area for a conical indenter 
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is 2 2tanA h= π θ , where h  is the maximum indentation depth, and θ is the half 

angle of the indenter. For a Berkovich indenter, 224.56A h= , and for a Vickers 

indenter, 224.50A h= . For both Berkovich and Vickers indenters, 70.3θ = o . Let 
us note by V the volume of the structure and by S  the surface between the 
indenter and the sample.  

The total volume of MWCNT can be defined as the product of the cross-
sectional area mwA  and the length L  [21] 

2 2[( 0.17) ( 0.17) ]mw outer innerA R R= π + − − ,                  (7)                        

where 0.17 is a half layered thickness of  nanotube.  
The inverse problem is solved by a genetic algorithm. The experimental results 

[20] are used to calculate the load-unloaded-displacement curve, as shown in 
fig.1. As the experiments report, the loading portion consists of three stages: an 
initial linear increase, then a sudden drop in the slope and the curve becoming flat, 
and a third stage comprising and increasing load. The sudden decrease in the 
slope is the signature MWCNT shell buckling, which indicates the collapse process. 
After buckling, neighboring nanotubes come into contact with the indenter tip, 
which results in an increase in load, as seen in figure 1 in the third stage. The 
position of zero displacement corresponds to a nonzero load. Applying our theory, 
the critical buckling experiments is calculated, 2.18 µ N, very closed with the 
experimental result (between 2 and 2.5 µ N).  

 
Figure 1. Scheme of the load-unloaded-displacement curve.  
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4. Results 

The deformation is analysed with respect to the bending angle θ . Two points 

of local buckling are observed in the nanotube at 25.58θ = o . When θ  increases, 
the axial compression in the tube increases too, and when the compressive stress 
reaches a critical value, the tube will locally buckle. The buckling mechanism can 
be described by localized functions with no change in shape, known as solitons or 
kinks [22], [23]. The value of ζ  at the point of local buckling is around 0.14. With 

the increase in θ , the top and bottom parts of the kink get closer to each other, 
and at a certain stage, the distance between them reaches the critical equilibrium 
distance. Upon additional loading, this distance remains unchanged because there 
are no external normal loads applied on the walls to prevail over the repulsive van 
der Waals forces. 

 
Figure 2. Two points of local buckling. 

 
For 25.58θ > o , two regions in which a kink mechanism of deformation ap-

pears. This region is represented in figure 2. In according to experiments and mo-
lecular dynamics simulations, the pattern of the deformation resembles the kink 
mechanism similar to that of a macrotube.  

 
Figure 3. The generation of kink deformations. 

 
A portion of the wall flattens and forms a domain that rotates about a central 

hinge line. This portion is treated by the molecular dynamic.  
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Once the kink mechanism starts, the nanotube becomes a mechanical 
mechanism. The remaining part of the tube remains circular although it flattens 
and decreases its curvature.  

The generation of the kink deformations is presented in figure 3. Figure 4 

shows the cross section of the nanotube for different values of cR R

R

−
ζ = , where 

R  and cR , are the radius before and after deformation. A consequence of the kink 
deformation mechanism is the rippling configuration of the nanotube. Figure 5 pre-
sents the rippling configuration. 

Figure 6 represents the variation of the dimensionaless curvature C  with 
respect cu θ . The sinusoidal shape of this curve is another consequence of the 
kink deformation mechanism. 
 

 
Figure 4. Cross section of the nanotube for different values of ζ . 

 

 
Figure 5. The rippling configuration of a CNT. 
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Figure 6. The variation of dimensionless curvature with respect to θ . 

5. Conclusions 

An inverse problem is proposed in this paper to describe the shell buckling 
mechanism of MWCNT by combining elements of nonlocal theory and molecular 
mechanics. The effect of the inlayer van der Waals atomistic interactions for 
MWCNTs included by means of the Brenner-Tersoff potential. The neighboring 
walls of a multiwalled nanotube are coupled through van der Waals interactions, 
and the buckling would initiate in the outermost shell, when nanotubes are short 

/ 1 20L d ≈ − .  

The nanotube will locally buckle at 25.58θ = o , where θ  is the bending 

angle. For 25.58θ > o , a kink deformation mechanism is starting and a portion of 
the nanotube becomes to rotate about a central hinge line. For large distances, the 
van der Waals force is attractive, but when the separation between the atoms is 
below the equilibrium distance of 3.42Å, it becomes strongly repulsive. Upon 
complete unloading from angles below 110° the nanotube completely recovers. At 
a very large bending angle of 120°, atomic bonds break and the deformation of 
the nanotube becomes irreversible. 
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