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Cornel HaŃiegan  

The Ben Daniel-Duke Model Applied to Semiconductor Hetero-

structure - Part 2 

We investigate the semiconductor heterostructure with the Ben Daniel-
Duke model applied for the lowest conduction states Ga As-Ga (1) as 

and for the heavy levels at 0=⊥k in any heterostructures (1). In a 

quantic level we obtained the familiar staircase density of states (2). In 
(3) we calculated the incrgy position of the interface state in a single 
HgTe-CdTe heterojonction. We also obtained the existence of the inter-
face state relies only on the relative position of the I’8 edges of HgTe 
and CdTe, their actual energy position, as well as their behavior at 

0≠⊥k . 
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Equation(19) defines the in-plane effective mass of the 
thn  sub band in the 

vicinity of ⊥k =0. It may be remarked that if AB mm > , as is the case in GaAs-

Ga(Al)As or InPAsInGa −53.047.0 ,this in-plane mass nm  will increase with 

increasing sub band index n 
Using the approximately parabolic in-plane dispersion laws (equation (14)) it 

is very easy to calculate the density of states p )(ε  associated with the bound 

states nE . Proceeding exactly as in chapter I we obtain: 
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where Y(x) is the step function. We recover the familiar staircase density of states. 

 The properties of a Ben Daniel-Duke quantum well are summarized in figure 4. 
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 From the left to the right: conduction band edge profile, energy levels 

21andEE  and their associated envelope functions; in-plane dispersions of the 1E  

and 2E  sub bands; energy dependence of the heterostructure density of states 

).(εp   

 

 
 Figure 4. - A recollection of the main properties of the quantum well bound 
states, solutions of a Ben Daniel-Duke Hamiltonian. 

 

  3.Interface states of Ben Daniel-Duke quantum wells 

( 0;0 =< ⊥kmm BA ) 

The case 0<BAmm   is practically realized in HgTe-CdTe heterostructures 

[20] (see Fig. 5). CdTe is a conventional open gap semiconductor whose level 

ordering is the same as is found in GaAs. HgTe is a symmetry-induced zero gap 

semiconductor. The 6Γ  band, which is a conduction band in most III-V and II-VI 

semiconductors, is a light hole band in HgTe. The 6Γ  edge lies ~ 0.3 eV below the 

8Γ  edges. As the 8Γ light band 6Γ band are nearly mirror-like, the 8Γ  light band is 

a conduction band in HgTe, degenerate at the zone centre with 8Γ heavy hole 

band(inversion asymmetry splitting having been neglected). 
Ignoring the absence of centro-symmetry of the zinc-blade lattice, the light 

particle and heavy hole states decouple at . 
We can thus treat the problem of the light particle states associated with a 

I’8 edge as if we were considering a single band. The interesting feature of the 

HgTe-CdTe heterostructures is that the light particle changes the sign of its 
effective mass across the interfaces, being electro-like in the HgTe layer and light 

hole-like in the CdTe layers. To be specific, let us consider a CdTe-HgTe-CdTe 
double heterostructures. 
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Figure 5.- Band structures of bulk HgTe (left panel) and CdTe (right panel) in the 
vicinity of the I’ point (schematic). 

 

According to [27] the bottom of the HgTe I’8 conduction band lies at an Λ ~ 
40 meV above the top of the CdTe I’8 valence band. Thus, bound states of the 

heterostructures only exist if Λ−≥ε (the energy zero being taken at the I’8 edge 

in HgTe). If 0≤≤Λ− ε , the states are evanescent in both kinds of layers while if 

0≥ε , the carrier wave vector is real (imaginary) in the HgTe (CdTe) layers. 

Clearly, bound states of positive energies will exist (an infinite number in the one-
band description of each host layer). Proceeding as in section 1. their energies will 

fulfil 
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Figure 6.- Evolution of ground and first excited bound states (labeled 1 and 2 

respectively) versus the HgTe slab thickness in a CdTe-HgTe-CdTe double 
heterostructure. 

 

The bound state wave functions are all characterized by cusps at the 
interfaces due to the change in the carrier effective mass at the hetero-interfaces. 

This sign reversal also implies that equation (22) can be fulfilled at 0=ε  for a 

certain LA while equation (21) can not. This means that at least one state (even in 

z) should lie below the bottom of the HgTe conduction band edge. This state is an 
interface level, built from evanescent states in each of the host layers, whose wave 
function peaks at the interface. More precisely, we can write: 
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By matching ( )z1χ  and ( )
dz

d
z 11 χµ −

 at ALz
2

1= , we find that ε should be 

the root of the implicit equation 
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 It is very easy to check that equation (29) always admits one solution E1(and 
only one) which extrapolates to – Λ when LA→0. A second state may actually exist 

in the energy segment [-Λ,0] if the HgTe layer is thick enough. It corresponds to 

an odd envelope function: 
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The E2 energy is the solution of the implicit equation: 
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which admits a solution if  

Λ
>

BA

B
A mm

m
L

2

2 2
h

                                                                    (34) 

 
Again, the solution of equation (33), if it exists, is unique. When LA becomes 

very large the energies E1 and E2 converge to the value: 
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which is the energy position of the interface state in a single HgTe-CdTe 

heterojunction [3, 4].  
  
 Clearly, at large LA (i.e. kALA>1)  the two states E1 and E2 are very well 
approximated by the symmetric and antisymmetric combinations of the two 

interface states centred at AL
2

1±  respectively. The behavior of E1 and E2 versus 
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LA presented in figure 6 to illustrate the previous discussion. In figure 7 we show 

the calculated ( )z1χ  envelope functions in  Hg1-xCdxTe-HgTe-Hg1-xCdxTe quantum 

wells to illustrate the interface nature of the E1 state. Although the existence of the 
interface state relies only on the relative position of the I’8 edges of HgTe and 
CdTe, their actual energy position, as well as their behavior at k┴≠0 (where they 

strongly couple to the heavy hole states), remains a subject of active research. 

 

 
 

Fig. 7. – Dimensionless envelope functions of the ground states in Hg1-xCdxTe-
HgTe-Hg1-xCdxTe double heterostructures (x=1 and x=0.2) for two different HgTe 

slab thicknesses.  
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