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Numerical Model for the Study of Electromagnetic 
Processes in non-Stationary Regime 

The non-steady (non-stationary) state of many electromagnetic proc-
esses encountered in the industrial practice may be considered as 
quasi-stationary, in the sense that in all conducting parts one may ne-
glect the capacitance current compared to the line current. The most 
frequently used model for such a process is the mathematical model of 
electromagnetic potentials, which consists mainly of the equation:  

( ) sJµ
ct

A
µσA =∂+×∇×∇      (1) 

Where: A  is the vector magnetic potential, σµ ,  are the magnetic 

permeability and the electric conductivity respectively, and sJ is the 

density of the electric current furnished by the power supply sources 
(power units) of the device in which the studied process intervenes. 

Knowing the quantities σµ , , sJ  and adding to equation (1) the sam-

pling condition and the border conditions, we obtain through its inte-

gration the quantity A , which enables us to determine all the parame-
ters describing the respective process. However, the direct integration 
of the differential equation (1) is possible only in several specific cases, 
which imposes the use of numerical methods. In principle through 
these methods equation (1) is turned into a system of equations where 

the unknown terms are the values of the quantity A  in certain points 
within the range of occurrence of the studied process. The paper uses 
the method of the finite elements and we determine the matrix of the 
unknown coefficients as well as the column vector of the constant 
terms 

1. Introduction 

In principle through these methods we transform equation (1) in a system of 

equations in which the unknown terms are the values of the quantity A  in certain 
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points of the range within which the studied process takes place. In this paper the 
numerical model is obtained with the method of finite elements, which requires 
firstly that the range within which the studied process takes place should be di-
vided into disjoint segments, called finite elements. These are interconnected 
among themselves through certain points called nodes. 

2. Deducing the numerical model 

For simplification we introduce the notation: 

Aa ×∇×∇=        (2) 

Consequently equation (1) becomes: 

sIµa
t

A
µσ =+

∂
∂

      (3) 

The method of the finite elements uses four scalar equations, and relation 
(3) is a vector equation. For this reason we transform (3) in a scalar one, using the 
method of decomposing into components along the directions of the axes of the 
chosen system of co-ordinates. In general, the axes of the system of co-ordinates 
are noted with x, y, z, but, in order to express the matrix condenser, the relations 
obtained where we will have the notations: x1, x2, x3. Also, the component of any 
vector quantity along each axis will be noted using the symbol used to designate 
that vector quantity, an index that is the free index x for the respective axis. Con-
sidering that the respective range is 3D, according to the above, equation 3 is 
transformed into 3 scalar equations: 

31,, ==+
∂

∂
αIµQ

t

A
µσ αsα

α      (4) 

In equation 4 the unknown terms are the values of the components of the 

vector magnetic potential A , along the axes, i.e. αA  which generally varies both in 

time and space, i.e.: 

( ) 31,,, == αPtAA αα ,      (5) 

where t is a random moment, and P represents the co-ordinates of a certain point 
P from the range where the studied process takes place. 

The functions ( )PtAα ,  usually have a continuous variation in time and 

space. 
The finite elements method belongs to the category of numerical methods of 

approximation through discretisation. Within such a method, each of the αA func-

tions is replaced with another one, called approximation of the respective function, 

noted with αÂ , which exhibits a discrete variation in time and space. 

Further on, the space discretisation is realised for each finite element. We 
consider an arbitrary finite element, with a p number of nodes numbered in a cer-
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tain order 1, 2, 3, …, p, called local indexation of nodes for the considered finite 
element. One of its arbitrary nodes is marked with j, and the values of the func-

tions αA in the respective node will be noted with pjαA αj ,,,, 131 == . Obviously 

these values are constant in space, but they depend on the chosen t moment, i.e.: 

( ) pjαtAA αjαj ,,,, 131 ===      (6) 

The numerical model for the considered finite element, called elemental nu-
merical mode, containing as unknown terms precisely the values 

pjαA αj ,,,, 131 ==  so a number of 3p unknown terms, so we shall have 3p 

equations. Of course this is valid for each concrete moment. In order to obtain the 
elemental numerical model corresponding to the arbitrary moment, each node is 

attached a function which for the arbitrary node is noted with jN . 

Thus, considering that P is a random point of the D range of the finite ele-

ment considered, the jN  functions are of the following form: 

( ) pjPNN jj ,, 1==       (7) 

As the )(PN j  functions depend on the shape of the finite element consid-

ered, they are called form functions attached to the nodes of the respective finite 

element. Moreover, the αÂ  approximations for P are chosen of the form: 

DPαANA
p

j

αjjα ∈==∑
=

,,,ˆ 31
1

     (8) 

It is obvious that all the above remarks on the αA  components remain valid 

also for the αa components, i.e. for each αa  component we define an approxima-

tion marked with αâ . 

But, taking into consideration relation (2), the αâ  approximations are no 

longer defined through relations of the (8) form, and they must be expressed de-

pending on the αÂ  approximation. For this purpose we define the vector ap-

proximation of a vector quantity as being also a vector quantity having as compo-
nents the approximations of the size of the respective vector quantity. So the vec-

tor approximations of the quantities aA, , noted with Â and â  respectively have 

as components the approximations αÂ and 31,,ˆ =αaα , respectively 

Besides, it is obvious that relation (2) remains valid even if the vector quanti-

ties A,a  are replaced with their vector approximations, i.e.: 

Au ˆˆ ×∇×∇=        (9) 

It is easily verified that, from the vector point of view, relation (8) is: 
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∑
=

=
p

j

jj ANA
1

ˆ ,       (10) 

where jA  is the value of the vector quantity A  in the knot j, having as compo-

nents the quantities 31,, =αA αj . 

After replacing relation (10) in relation (9) we obtain: 

∑
=

×∇×∇=
p

j

jj ANa
1

ˆ       (11) 

Taking into consideration that in the ratio with the rotor operator the vector 

quantities jA  are constant, relation (11) becomes: 

( ) ( ) ( )[ ]∑
=

∆−∇⋅∇⋅=
p

j

jjjj ANNAa
1

ˆ ,    (12) 

where ∆  is the Laplace operator. 

Relation (12) shows that the approximations 31,,ˆ =αaα  are the values of 

the components of the right member of this relation, and in order to determine 
them we must first express the right member analytically. 

First, noting with 31,, =αu α , the unit vectors of axes, the vector quantities 

jA  are expressed analytically through the relation: 

pjuAA
α

ααjj ,, 1
3

1

==∑
=

     (13) 

For instance, if we use a Cartesian system of co-ordinates, then the operator 
with the analytical expressing: 

∑
= ∂

∂=∆
3

1α

α

α

u
x

       (14) 

For this case in the paper [1] it is shown that the expressions αû  are given 

by the relations: 

31
1

3

1

,,ˆ =













=∑ ∑

= =

αACa
p

j β
βj

j
αβα ,     (15) 

where: 

jαβ
β

j

α

j
αβ Nδ

x

N

x
C ∆−















∂
∂

∂
∂= ,     (16) 

in which αβδ  is the Kroneker’s operator. 

For obtaining the numerical model it is necessary that the differential 
mathematical models be transformed into integral models on the D range of the 
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finite element considered. For this purpose we use the method of weighed residues 
in the Galerkin variant, which for each knot i of the finite element leads to an inte-
gral model of the form: 

311 ,,,,ˆ
ˆ

===+
∂

∂
∫∫∫ αpidDJNµdDaNdD

t

A
Nµσ

D
αDi

D
αi

D

α
i (17) 

In relation (17) we replace the approximations αα â,Â  by their expressions 

given by relations (8), relation (15). 
In the mentioned paper it is shown that for the second term of the left 

member of the relation (17) we obtain: 

311
1

3

1

,,,,ˆ ==













=∫ ∑ ∑

= =

αpiACdDaN

D

p

j β
βj

ji
αβαi    (18) 

where: 

∫=
D

j
αβi

ji
αβ dDCNC       (19) 

We also introduce the notation: 

311 ,,,, === ∫ αpiJNF

D

αsi
i

α      (20) 

For the first term of the left member of relation (17) we arrive at: 

∫ ∑∫ 



























∂
∂=

∂
∂

=D

p

j
αjji

D

α
i dDAN

t
NdD

t

A
N

1

ˆ
   (21) 

Considering the property of the derivative of a sum and the fact that the 
functions of the Nj type have only one spatial variation, relation (21) becomes: 

∫ ∑∫ 













∂
∂

=
∂

∂

=D

p

j

αj
ji

D

α
i dD

t

A
NNdD

t

A
N

1

ˆ
    (22) 

Taking into account the fact that depending on the summing operation, Nj is 
a constant, we may introduce under the sum and it follows: 

∫ ∑∫ 













∂
∂

=
∂

∂

=D

p

j

αj
ji

D

α
i dD

t

A
NN

t

A
N

1

ˆ
    (23) 

Using the property of an integral referring to a sum, relation (23) changes 
into: 

( ) 311
1

,,,,
ˆ

==
∂
∂=

∂
∂

∑∫
=

αpiA
t

TdD
t

A
N

p

j
ijij

D

α
i ,   (24) 

where: 

pjpidNNT

D

jiij ,,,, 11 === ∫     (25) 
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In relation (17) we replace relations (25), (18), (20) and we get: 

311
1

3

11

,,,,)()( ===+
∂
∂

∑ ∑∑
= ==

αpiFµACA
t

Tµσ
p

j β

i
αβj

ji
αβαj

p

j
ij  (26) 

From relations (19) and (16) we obtain: 












−















∂
∂

∂
∂= ∫ jαβ

β

j

αD

ji
αβ DNδ

x

N

x
NiC     (27) 

Having chosen the form functions with relations (25), (27) we calculate the 

coefficients 313111 ,,,,,,,,, ==== βαpjpiCT ji
αβij . Moreover, knowing the 

components of the current density 31,, =αI αs  with relation (20) we compute the 

free terms 311 ,,,, == αpiF i
α . 

At the same time, as shown, through 31,, =αA αj  we must understand the 

values of the components of the vector quantity pjA j ,, 1=  at a certain arbitrary 

moment and using a diagram with finite differences, the partial derivative against t 
is expressed depending on the values αjA and the values of the same components 

at one or several prior moments. Considering that the values of the components at 
the initial moment have been imposed, it means that the values of the components 
at any moment prior to the considered one are already known. 

In conclusion, in relations (26) the only unknown terms are the values of 

components 311 ,,,, == αpjA αj . 

With the values p, P, I determined, their real values, noted with pb, Pb, Ib re-
spectively are calculated from relations (15), (16), (17). 
 

3. The matrix expression 

In order to obtain the system of equations, firs tin relations (27) we develop 
the sum depending on p and we obtain: 

( ) i
α

p

j
j

ji
αj

ji
αj

ji
ααjij FµACACACA

t
Tµσ =







 +++
∂
∂

∑
=1

332211   (28) 

For implementing the solution of this system of equations on a computer we 
should express it under matrix form. 

For this purpose we note with [A] the matrix of the unknown terms, which 
will be a column matrix (column vector) with the dimension 3px1 
Keeping in mind the above, 3 consecutive rows of the matrix represent the values 

of components A  of one node at a time, noted in the sequence: 1, 2, 3, …, p. This 
means that: 

[ ] [ ]Tppp AAAAAAAAAA 321232221131211 ...= ,    (29) 
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where the exponent T indicates the operation of transposition of the matrix. 
We introduce the notation: 

[ ]
T

ppp

t

A

t

A

t

A

t

A

t

A

t

A

t

A

t

A

t

A
A

t









∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂=

∂
∂ 321232221131211 ...  (30) 

With this, matricially, the system of equations is written: 

[ ] [ ] [ ][ ] [ ]FAKA
t

Mµσ =+
∂
∂

,     (31) 

where [F] is a column matrix with the dimensions 3px1, and its elements are calcu-
lated with the relations (20). 

It is clear that in [11] and [12] we must have square matrices with the 
3px3p and their elements are determined with relations (26) and (27) 

Taking into account the above on the model in which the equations of the 
system are obtained, it follows that for any matrix, the rows are obtained allotting 
to i the values 1, 2, 3, …, p, and for each value attributed for i we get 3 consecu-
tive rows obtained for the values 321 ,,=α . 

Consequently, for an arbitrary row noted with γ  for the values of i and 

α are given by the relations: 

pπγ

γ
roundi

=








=
3        (32) 

pγ

γifγ

γif
α

31

033

033

,

mod,mod

mod,

=




≠
=

=
     (33) 

where 








3

γ
round  is the function of superior rounding having as result the natural 

number equal or immediately superior to the value 
3

γ
, γ  mod 3 is the rest of the 

integer division of γ  by 3. 

The term of the γ  row of the matrix [F] noted with γF , p,1=γ , is calcu-

lated with relations (20), where i and α  have the values given by relations (32) 

and (33) respectively. 

In the paper [3] it is shown that for an arbitrary column noted with δ  of 

matrix [K] the values of j and β  are given by the relations: 

pδ

δ
roundj

,1

3

=








=
                        (34) 
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pδ

δdacăifδ

δif
β

31

033

033

,

mod,

mod,

=




≠
=

=
     (35) 

For the calculus of the elements of matrix [M] we use the relations (25), de-
fining a square matrix with the dimensions p x p, but the matrix [M] has the di-
mensions 3p x 3p. Consequently each row of the matrix [M] some elements have 
the values given by relations (25) and the other are null. Similarly to the case of 
the other two matrices, for an arbitrary row of matrix [M], noted with γ , the index i 
of relations (25) is calculated with relation (32). 

It is easy to observe that the values of δ  for which we obtain k = the rela-

tion gives j: 
33 −+= αkδ        (36) 

From relation (36) it follows: 

3

3 αδ
k

−+=        (37) 

4. Conclusion 

The numerical model presented has the advantage of being a rather simple 
model and can be implemented on an electronical computer with any programming 
language. 

References 

[1] Jin I. The Finite Element Method in Electromagnetism. John Wiley and 
Sons.Inc, New York, 1993. 

[2] Tătucu, I. The computer aided analysis of the electromagnetic field. 
Analele UniversităŃii Eftimie Murgu, ReşiŃa, an VII, nr.2, Tom I, 2000, 
ISSN 1453-7396 

[3] Zienkiewicz, O.C. The Finite Element Method. McGraw-Hill Company, 
London, 1997. 

Addresses: 

• Conf. Dr. Eng. Iancu Tătucu, “Eftimie Murgu” University of ReşiŃa, PiaŃa 
Traian Vuia, nr. 1-4, 320085, ReşiŃa, i.tatucu@uem.ro 

• Assist. Eng. LenuŃa Suciu, “Eftimie Murgu” University of ReşiŃa, PiaŃa 
Traian Vuia, nr. 1-4, 320085, ReşiŃa, ilesuciu@uem.ro 


