

Andrea A. Minda, Mihaela Tomescu

Perron Conditions for Stability of Linear Skew-Product Semiflows in Banach Spaces

In this paper we give necessary and sufficient conditions for uniform exponential stability of linear skew-product semiflows in Banach spaces. We give theorems of characterization for uniform exponential stability of linear skew-product semiflows in terms of boundedness of some operators acting on $C_{00}(R_+, X), C_b(R_+, X), C_c(R_+, X)$ and $L^p(R_+, X)$, respectively.

1. Linear skew-product semiflow

Let X be a Banach space, let (Θ, d) be a metric space and let $E = X \times \Theta$. We shall denote by B(X) the Banach algebra of all bounded linear operators from X into itself. Throughout the paper, de norm on X and on B(X) will be denoted by $\|\cdot\|$.

Definition 1.1 A continuous mapping $\sigma: \Theta \times R_+ \to \Theta$ is said to be a **semiflow** on Θ , if it has the following properties:

- (i) $\sigma(\theta, 0) = \theta$, $\forall \theta \in \Theta$
- (ii) $\sigma(\theta, s + t) = \sigma(\sigma(\theta, s), t)$ for $\forall (\theta, s, t) \in \Theta \times \mathbb{R}^2_+$

Definition 1.2 A pair $\pi = (\Phi, \sigma)$ is called **linear skew-product semiflow** on $E = X \times \Theta$ if σ is a semiflow on Θ and $\Phi : \Theta \times R_+ \to B(X)$ satisfies the following conditions:

- (i) $\Phi(\theta, 0) = I$, the identity operator on X, $\forall \theta \in \Theta$
- (ii) $\Phi(\theta, t + s) = \Phi(\sigma(\theta, s), t) \Phi(\theta, s)$ for all $(\theta, t, s) \in \Theta \times \mathbb{R}^2_+$ (the cocycle identity)
- (iii) $\exists M \ge 1$ and $\omega > 0$ such that $\|\Phi(\theta, t)\| \le Me^{\omega t}$ for $\forall (\theta, t) \in \Theta \times \mathbb{R}_+$

If, in addition,

(iv) for every $(x,\theta) \in E$ the mapping $t \to \Phi(\theta,t)x$ is continuous then π is called a strongly continuous linear skew-product semiflow.

Remark 1.1 Statement (iii) is equivalent with the following

(iii)' there exist a nondecreasing function $f: \mathbb{R}_+ \to \mathbb{R}^*_+$ such that $\|\Phi(\theta, t)\| \le f(t)$ for all $(\theta, t) \in \theta \times \mathbb{R}_+$.

Example 1.1

Let X be a Banach space. We consider $C(R_+,R)$ the space of all continuous function with the topology of uniform convergence on compact subsets on R_+ . This space is metrizable with the metric

$$d(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{d_n(x, y)}{1 + d_n(x, y)} \quad \text{where } d_n(x, y) = \sup_{t \in [0, n]} |x(t) - y(t)|.$$

On the Banach space X, we consider the nonautonomous differential equation $\dot{x}(t) = a(t)x(t)$, $t \ge 0$

where $a: \mathbb{R}_+ \to \mathbb{R}_+$ be a uniformly continuous function such that there exists $\alpha := \lim_{t \to \infty} a(t) < \infty$. If we denote by $a_s(t) = a(t+s)$ and by $\Theta = \overline{\{a_s: s \in \mathbb{R}_+\}}$ then $\sigma(\theta, t)(s) := \theta(t+s)$ is a semiflow on Θ , for $\Phi: \Theta \times \mathbb{R}_+ \to B(X)$, $\Phi(\theta, t) X = e^{\int_0^{t_0} \theta(\tau) d\tau} X$ we have that $\pi = (\Phi, \sigma)$ is a linear skew-product semiflow on $E = X \times \Theta$.

Definition 1.3 A linear skew-product semiflow $\pi = (\Phi, \sigma)$ on $E = X \times \Theta$ is said to be **stable** if there exists N > 0 such that

 $\left\|\Phi\left(\theta,t\right)\right\| \leq N, \quad \forall\left(\theta,t\right) \in \Theta \times \mathsf{R}_{_{+}}$

Definition 1.4 A linear skew-product semiflow $\pi = (\Phi, \sigma)$ on $E = X \times \Theta$ is **uniformly exponentially stable** if there are $N, \nu > 0$ such that

 $\left\|\Phi(\theta,t)\right\| \leq N e^{-\nu t}, \ \forall (\theta,t) \in \Theta \times \mathsf{R}_{+}$

Example 1.2 Let $\lambda \in \mathbb{R}_+$. Consider the linear skew product semiflow $\pi_{\lambda} = (\Phi_{\lambda}, \sigma)$ where $\Phi_{\lambda}(\theta, t) = e^{-\lambda t} \Phi(\theta, t)$ and $\pi = (\Phi, \sigma)$ is the linear skew product semiflow given in example 1.1. For $\lambda > \alpha$, π_{λ} is uniformly exponentially stable and for $\lambda \in [0, \alpha]$ and $\theta_0(\tau) = \alpha$, for all $\tau \ge 0$ we have :

 $\left\| \Phi_{\lambda} \left(\theta_{0}, t \right) x \right\| = \begin{cases} \| x \|, & \text{if } \lambda = \alpha \\ e^{\alpha - \lambda} \| x \| & \text{if } \lambda < \alpha \end{cases}$, so π_{λ} is not uniformly exponentially stable.

Let $C_b(\mathbf{R}_+,\mathbf{X})$ be the linear space of all bounded continous functions $u:\mathbf{R}_+ \to \mathbf{X}$ and

$$C_{0}(\mathsf{R}_{+}, X) = \left\{ u \in C_{b}(\mathsf{R}_{+}, X) : \lim_{t \to \infty} u(t) = 0 \right\}$$
$$C_{00}(\mathsf{R}_{+}, X) = \left\{ u \in C_{b}(\mathsf{R}_{+}, X) : u(0) = \lim_{t \to \infty} u(t) = 0 \right\}$$

Endowed with sup - norm $||| u ||| = \sup_{t \ge 0} || u(t) ||$, $C_0(R_+, X)$ and $C_b(R_+, X)$ are Banach spaces.

Let $C_c(\mathbf{R}_+, \mathbf{X})$ be the space of all continous functions $u: \mathbf{R}_+ \to \mathbf{X}$ with compact support contained in $(0, \infty)$.

Denote by F the linear space of all Bochner measurable functions $u: \mathbb{R}_+ \to X$ identifying the functions which are equal almost everywhere. For every $p \in [1, \infty)$ the linear space

$$\mathcal{L}^{\rho}(\mathsf{R}_{+},\mathsf{X}) = \left\{ u \in \mathcal{F} : \int_{0}^{\infty} \left\| u(t) \right\|^{\rho} dt < \infty \right\}$$

is a Banach space with respect to the norm:

$$\left\|\boldsymbol{u}\right\|_{\rho} \coloneqq \left(\int_{0}^{\infty} \left\|\boldsymbol{u}\left(t\right)\right\|^{\rho} dt\right)^{\frac{1}{\rho}}$$

2. Perron conditions for exponential stability

Definition 2.1 We say that a strongly continous linear skew-product semiflow $\pi = (\Phi, \sigma)$ is $(C_c(R_+, X), B(\Theta, C_b(R_+, X)))$ - **stable** if:

(i) the linear operator $P: C_{c}(R_{+}, X) \rightarrow B(\Theta, C_{b}(R_{+}, X))$

$$P(u)(\theta)(t) = \int_0^t \Phi(\tau(\theta, \tau), t - \tau) u(\tau) d\tau$$

is well defined .

(ii) there exist K>0 such that :

$$\left\|Pu\right\|_{B\left(\Theta,C_{b}\left(R_{+},X\right)\right)}\leq K\left\|\left\|u\right\|,\forall u\in C_{c}\left(R_{+},X\right)$$

Definition 2.2 Let $E(R_+, X) \in \{C_{00}(R_+, X), C_b(R_+, X)\}$, we say that a strongly continous linear skew-product semiflow $\pi = (\Phi, \sigma)$ is

$$\left(E\left(R_{+},X\right), B\left(\Theta,C_{b}\left(R_{+},X\right)\right) \right) \text{-stable if } S: E\left(R_{+},X\right) \to B\left(\Theta,C_{b}\left(R_{+},X\right)\right) \text{ with:}$$

$$S\left(u\right)\left(\theta\right)\left(t\right) = \int_{0}^{t} \Phi\left(\sigma\left(\theta,\tau\right),t-\tau\right)u\left(\tau\right)d\tau$$

is well defined .

Proposition 2.1 If π is $(E(R_+, X), B(\Theta, C_b(R_+, X)))$ -**stable**, then S is a bounded operator.

Proof

Let $(u_n) \subset E(R_+, X)$, $u \in E(R_+, X)$ and $f \in B(\Theta, C_b(R_+, X))$ such that: $u_n \xrightarrow[n \to \infty]{} u$ in $E(R_+, X)$ and $S(u_n) \xrightarrow[n \to \infty]{} f$ in $B(\Theta, C_b(R_+, X))$

We have that:

$$S(u_n)(\theta)(t) \mathop{\longrightarrow}_{n \to \infty} f(\theta)(t), \qquad (\forall)(\theta, t) \in \Theta \times R,$$

Using $u_n \underset{n \to \infty}{\rightarrow} u$ uniformly on R_+ we obtain

$$S(u_n)(\theta)(t) = \int_0^t \Phi(\sigma(\theta,\tau), t-\tau) u_n(\tau) d\tau \underset{n \to \infty}{\to} \int_0^t \Phi(\sigma(\theta,\tau), t-\tau) u(\tau) d\tau =$$
$$= S(u)(\theta)(t), (\forall)(\theta,t) \in \Theta \times R_+$$

We have f = S(u), so S is a closed linear operator and S is bounded.

Proposition 2.2 Let $\pi = (\Phi, \sigma)$ be a linear skew-product semiflow on $E = X \times \Theta$. If there are $t_0 > 0$ and $c \in (0,1)$ such that $\|\Phi(\theta, t_0)\| \le c$ for $\forall \theta \in \Theta$, than π is uniformly exponentially unstable.

<u>Proof</u>

Let $M \ge 1$ and $\omega > 0$ be given by definition 1.2. and ν be a pozitive number such that $c = e^{-\nu t_0}$.

Let $\theta \in \Theta$ be fixed. For $t \ge 0$ there are $n \in \mathbb{N}$ and $r \in [0, t_0]$ such that $t = nt_0 + r$. Than we obtain :

$$\left\|\Phi\left(\theta,t\right)\right\| \leq \left\|\Phi\left(\sigma\left(\theta,nt_{0}\right),r\right)\right\| \left\|\Phi\left(\theta,nt_{0}\right)\right\| \leq Me^{\omega t_{0}}e^{-nvt_{0}} \leq Ne^{-vt}$$

Where $N = Me^{(\omega+\nu)t_0}$. So, π is uniformly exponentially stable.

Theorem 2.1 Let $\pi = (\Phi, \sigma)$ be a strongly continous linear skew-product semiflow on $E = X \times \Theta$. Then the following assertions are equivalent:

(i) π is uniformly exponentially stable;

- (ii) π is $(C_b(R_+, X), B(\Theta, C_b(R_+, X)))$ stable;
- (iii) π is $(C_{00}(R_+, X), B(\Theta, C_b(R_+, X)))$ stable;
- (iv) π is $(C_{00}(R_{+},X),B(\Theta,C_{00}(R_{+},X)))$ stable;

Proof (i) \Rightarrow (*ii*) Let N,v > 0 with:

$$|\Phi(\theta, t)|| \leq Ne^{-vt} \quad \forall (\theta, t) \in \Theta \times \mathsf{R}_{+}$$

Let $u \in C_b(\mathbf{R}_+, \mathbf{X})$. For all $(\theta, t) \in \Theta \times \mathbf{R}_+$ we have

$$\left|S(u)(\theta)(t)\right| \leq \int_{0}^{t} N e^{-\nu(t-\tau)} \left\|u(\tau)\right\| d\tau \leq N \left\|\|u\|\right\| \int_{0}^{t} e^{-\nu s} ds \leq \frac{N}{\nu} \left\|\|u\|$$

So $S(u) \in B(\Theta, C_b(\mathbf{R}_+, X)).$

It follows that π is $\left(\mathcal{C}_{b}\left(\mathcal{R}_{+},\mathcal{X}\right),\mathcal{B}\left(\Theta,\mathcal{C}_{b}\left(\mathcal{R}_{+},\mathcal{X}\right)\right)\right)$ -stable.

The implication (ii) \Rightarrow (*iii*) is obvious, (*i*) \Rightarrow (*iv*) is a simple exercise, (*iv*) \Rightarrow (*iii*) is obvious.

Suppose that (iii) holds and there is K > 0 such that

$$\left\| P_{\theta} u \right\| \le \mathbf{K} \left\| u \right\| \tag{2.1}$$

for all $(u, \theta) \in C_o(\mathbf{R}_+, \mathbf{X}) \times \Theta$.

Consider $M \ge 1$ and $\omega > 0$ given by definition 1.2.

Let $\theta \in \Theta$ and $x \in X$. If $\alpha : \mathbb{R}_+ \to [0, 2]$ is a continous functions with the support contained in (0,1) and with the property :

$$\int_{0}^{1} \alpha(s) ds = 1$$

Then we consider the function

 $u: \mathsf{R}_{+} \to X, \quad u(t) = \alpha(t) \Phi(\theta, t) x$ So $u \in C_0(R_{+}, X)$ and $|||u||| = \sup_{t \in [0,1]} ||u(t)|| \le 2Me^{\omega} ||x||$ For $t \ge 1$ we have that:

$$P(u)(\theta)(t) = \int_{0}^{t} \alpha(s) \Phi(\sigma(\theta, s), t - s) \Phi(\theta, s) x ds = \Phi(\theta, t) x$$

Then using, (2.1)we have:

$$\Phi(\theta,t) \mathbf{x} \leq \left\| P(u) \right\| \leq 2KMe^{\omega} \left\| \mathbf{x} \right\|$$
(2.2)

For $t \in [0,1]$ we have :

$$\left\|\Phi\left(\theta,t\right)\right\| \le M e^{\omega} \tag{2.3}$$

So, denoting by $L = (2K + 1)Me^{\omega}$ and using (2.2) and (2.3) we obtain:

$$|\Phi(\theta,t)| \leq L$$

for all $(\theta, t) \in \Theta \times R_+$ Consider $\nu = \frac{e}{4LK}$ and $\varphi: R_+ \to R_+, \varphi(t) = \int_0^t s e^{-\nu s} ds$

The function φ is strictly increasing on R_+ with $\lim_{t\to\infty} \varphi(t) = \frac{1}{v^2}$

So, we can choose $\delta > 0$ such that $\varphi(\delta) > \frac{1}{2v^2}$.

Let $\theta \in \Theta$ and $x \in X$. Define the function

$$v: R_+ \to X, v(t) = t e^{-vt} \Phi(\theta, t) x$$

Then $v \in C_{00}(R_+, X)$ and

$$\|\|v\|\| \le L \|x\| \sup_{t\ge 0} te^{-\nu t} = \frac{L}{\nu e} \|x\|$$

We observe that $P(\nu)(\theta)(\delta) = \varphi(\delta)\Phi(\theta, \delta)x$ and it follows that :

$$\left\|\Phi\left(\theta,\delta\right)x\right\| \leq 2\nu^{2}\varphi\left(\delta\right)\left\|\Phi\left(\theta,\delta\right)x\right\| \leq 2\nu^{2}\left\|\left|P\left(\nu\right)\right\|\right| \leq 2\nu\frac{LK}{e}\left\|x\right\| = \frac{1}{2}\left\|x\right\|$$

It results that: $\|\Phi(\theta, \delta)\| \leq \frac{1}{2}$ for all $\theta \in \Theta$. From proposition 2.2 we have that π is uniformly exponentially stable.

Definition 2.3 Let $p \in (1, \infty)$. We say that a strongly continous linear skewproduct semiflow $\pi = (\Phi, \sigma)$ is $(C_c(R_+, X), B(\Theta, C_b(R_+, X)))$ -**p-stable** if:

(i) the linear operator $P: C_{c}(R_{+}, X) \rightarrow B(\Theta, C_{b}(R_{+}, X))$

$$P(u)(\theta)(t) = \int_0^t \Phi(\tau(\theta,\tau),t-\tau)u(\tau)d\tau$$

is well defined . (ii) there exist K>0 such that : $\|Pu\|_{\mathcal{B}(\Theta,C_{b}(R_{+},X))} \leq K \|u\|_{\rho}, \forall u \in C_{c}(R_{+},X)$

Definition 2.4 Let $p \in (1, \infty)$, we say that a strongly continous linear skewproduct semiflow $\pi = (\Phi, \sigma)$ is $(L^p(R_+, X), B(\Theta, C_b(R_+, X)))$ -**stable** if $Q: L^p(R_+, X) \to B(\Theta, C_b(R_+, X))$ with: $Q(u)(\theta)(t) = \int_0^t \Phi(\sigma(\theta, \tau), t - \tau)u(\tau)d\tau$

is well defined .

Proposition 2.3 If π is $(L^{p}(R_{+},X), B(\Theta, C_{b}(R_{+},X)))$ -stable, then Q is a bounded operator.

Theorem 2.2 Let $p \in (1, \infty)$ and $\pi = (\Phi, \sigma)$ be a strongly continous linear skew-product semiflow on $E = X \times \Theta$. Then the following assertions are equivalent:

(i) π is uniformly exponentially stable; (ii) π is $(L^{\rho}(R_{+}, X), B(\Theta, C_{b}(R_{+}, X)))$ - stable; (iii) π is $(C_{c}(R_{+}, X), B(\Theta, C_{b}(R_{+}, X)))$ -p- stable; Proof (i) \Rightarrow (ii) Let N,v > 0 such that: $\|\Phi(\theta, t)\| \le Ne^{-vt} \qquad \forall (\theta, t) \in \Theta \times \mathbb{R}_{+}.$ Let $u \in L^{\rho}(\mathbb{R}_{+}, X)$ and $p' = \frac{p}{p-1}$. For all $(\theta, t) \in \Theta \times \mathbb{R}_{+}$ we have: $\|Q(u)(\theta)(t)\| \le N \int_{0}^{t} e^{-v(t-\tau)} \|u(\tau)\| d\tau \le$ $\le N \left(\int_{0}^{t} e^{-vp'(t-\tau)} d\tau\right)^{1/\rho'} \left(\int_{0}^{t} \|u(\tau)\|^{\rho} d\tau\right)^{1/\rho} \le \frac{N}{(vp')^{1/\rho'}} \|u\|_{\rho}$

So $Q(u) \in B(\Theta, C_b(R_+, X))$ (ii) \Rightarrow (iii) follows from proposition 2.3. (iii) \Rightarrow (i) see [7], theorem 2.4.4.

References

- Chicone, C., Latushkin, Y., *Evolution semigroups in Dynamical Systems and Differential Equations*, Mathematical Surveys and Monographs 70 American Mathematical Society, 1999
- [2] Chow, S. N., Leiva, H. Existence and roughness of exponential dichotomy for linear skew-product semiflow in Banach spaces, J. Differential Equations 120 (1995), 429-477
- [3] Chow, S. N., Leiva, H., Two definitions of exponential dichotomy for skew-product semiflow in Banach spaces, Proceeding of the American Mathematical Society, volume 124, number 4, 1996, 1071-1081
- [4] Megan, M., Sasu, A.L., On uniform exponential stability of linear skew-product semiflows in Banach spaces, Bulletin Belgian Mathematical Society Simon Stevin 9 (2002) 143-154
- [5] Megan, M., Sasu, A.L., Sasu, B., Perron conditions and uniform exponential sability of linear skew-product semiflows on locally compact spaces, Acta Math. Univ. Comenianae, Vol LXX, 2(2001), 229-240
- [6] Megan, M., Sasu, A.L., Sasu, B, On uniform exponential unstability of linear skew-product semiflows, Seminar on Mathematical Analysis and Applications in Control Theory, University of the West, Timişoara, 2002
- [7] Sasu, A. L, *Admisibilitate și proprietăți asimptotice ale cociclilor*, Editura Politehnica Timișoara, 2005

Addresses:

- Assoc. Prof. Drd. Andrea A. Minda, "Eftimie Murgu" University of Reşiţa,Romania, Piaţa "Traian Vuia", nr. 1-4, Reşiţa, <u>andreaminda@yahoo.com</u>
- Asist.univ. drd. Mihaela Tomescu, University of Petrosani , mihaela tomescu2000@yahoo.com;