

ANALELE UNIVERSITĂȚII "EFTIMIE MURGU" REȘIȚA ANUL XIII, NR. 1, 2006, ISSN 1453 - 7397

Andrea A. Minda, Mihaela A. Tomescu

On Asymptotic Behaviors for Linear Skew-Product Semiflows in Banach Spaces

In this paper we give several characterizations of some asymptotic behaviours: stability, instability, dichotomy and trichotomy of linear skew product semiflows in Banach spaces. The obtained results are generalizations of some well-known results on asymptotic behaviours of linear differential equations. There are also presented several examples of semiflows and linear skew-product semiflows in Banach spaces.

1. Linear skew-product semiflow

Let X be a Banach space, let (Θ, d) be a metric space and let $E = X \times \Theta$. We shall denote by B(X) the Banach algebra of all bounded linear operators from X into itself. Throughout the paper, de norm on X and on B(X) will be denoted by $\|\cdot\|$.

Definition 1.1 A continuous mapping $\sigma: \Theta \times R_+ \to \Theta$ is said to be a **semiflow** on Θ , if it has the following properties:

- (i) $\sigma(\theta, 0) = \theta$, $\forall \theta \in \Theta$
- (ii) $\sigma(\theta, s+t) = \sigma(\sigma(\theta, s), t)$ for $\forall (\theta, s, t) \in \Theta \times \mathbb{R}^2_+$

Definition 1.2 A pair $\pi = (\Phi, \sigma)$ is called **linear skew-product semiflow** on $E = X \times \Theta$ if σ is a semiflow on Θ and $\Phi : \Theta \times R_+ \to B(X)$ satisfies the following conditions:

(i) $\Phi(\theta,0) = I$, the identity operator on X, $\forall \theta \in \Theta$

(ii) $\Phi(\theta, t + s) = \Phi(\sigma(\theta, s), t) \Phi(\theta, s)$ for all $(\theta, t, s) \in \Theta \times \mathbb{R}^2_+$ (the cocycle identity)

(iii) $\exists M \ge 1$ and $\omega > 0$ such that $\|\Phi(\theta, t)\| \le Me^{\omega t}$ for $\forall (\theta, t) \in \Theta \times \mathbb{R}_+$

If, in addition,

(iv) for every $(x,\theta) \in E$ the mapping $t \to \Phi(\theta,t)x$ is continuous then π is called a strongly continuous linear skew-product semiflow.

Remark 1.1 Statement (iii) is equivalent with the following

(iii)' there exist a nondecreasing function $f : \mathbf{R}_{+} \to \mathbf{R}_{+}^{*}$ such that $\left\| \Phi(\theta, t) \right\| \le f(t)$ for all $(\theta, t) \in \theta \times \mathbf{R}_{+}$.

Remark 1.2 If $\pi = (\Phi, \sigma)$ is a linear skew-product semiflow on $E = X \times \Theta$ then for every $\lambda \in \mathbb{R}$ the pair $\pi_{\lambda} = (\Phi_{\lambda}, \sigma)$, where $\Phi_{\lambda}(\theta, t) = e^{-\lambda t} \Phi(\theta, t)$ for all $(\theta, t) \in \Theta \times \mathbb{R}_{+}$, is also a linear skew-product semiflow called *the shifted skew product semiflow* on $E = X \times \Theta$.

Example 1.1

Let *X* be a Banach space. We consider $C(\mathbf{R}_+, \mathbf{R})$ the space of all continuous functions $f:\mathbf{R}_+ \to \mathbf{R}$. This space is metrizable with the metric

$$d(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{d_n(f,g)}{1 + d_n(f,g)} \quad \text{where } d_n(f,g) = \sup_{t \in [0,n]} |f(t) - g(t)|.$$

Let $a: \mathbb{R}_+ \to \mathbb{R}_+$ be a uniformly continuous, decreasing function such that there exists $\alpha := \lim_{t \to \infty} a(t) > 0$. If we denote by $a_s(t) = a(t+s)$ and by $\Theta = \overline{\{a_s: s \in \mathbb{R}_+\}}$ then $\sigma(\theta, t)(s) := \theta(t+s)$ is a semiflow on Θ , for $\Phi: \Theta \times \mathbb{R}_+ \to B(X)$, $\Phi(\theta, t) = e^{\int_0^{t_0} \theta(t) d\tau} x$ we have that $\pi = (\Phi, \sigma)$ is a linear skew-product semiflow on $E = X \times \Theta$.

2. Stability for Skew – Product Semiflows

Definition 2.1 A linear skew-product semiflow $\pi = (\Phi, \sigma)$ on $E = X \times \Theta$ is said to be **stable** if there exists N > 0 such that

 $\left\|\Phi\left(\theta,t\right)\right\| \leq N, \quad \forall \left(\theta,t\right) \in \Theta \times \mathsf{R}_{+}$

Definition 2.2 A linear skew-product semiflow $\pi = (\Phi, \sigma)$ on $E = X \times \Theta$ is **uniformly exponentially stable** if there are $N, \nu > 0$ such that

 $\left\|\Phi(\theta,t)\right\| \leq N e^{-\nu t}, \ \forall (\theta,t) \in \Theta \times \mathsf{R}_{+}$

Proposition 2.1 Let $\pi = (\Phi, \sigma)$ be a linear skew-product semiflow on $E = X \times \Theta$. If there are $t_0 > 0$ and $c \in (0,1)$ such that $\|\Phi(\theta, t_0)\| \le c$ for $\forall \theta \in \Theta$, than π is uniformly exponentially stable.

Proof

Let $M \ge 1$ and $\omega > 0$ be given by definition 2.2. and ν be a pozitive number such that $\mathcal{C} = \mathcal{C}^{-\nu t_0}$.

Let $\theta \in \Theta$ be fixed. For $t \ge 0$ there are $n \in \mathbb{N}$ and $r \in [0, t_0]$ such that $t = nt_0 + r$. Than we obtain :

$$\left\|\Phi\left(\theta,t\right)\right\| \leq \left\|\Phi\left(\sigma\left(\theta,nt_{0}\right),r\right)\right\| \left\|\Phi\left(\theta,nt_{0}\right)\right\| \leq Me^{\omega t_{0}}e^{-nvt_{0}} \leq Ne^{-vt}$$

Where $N = Me^{(\omega+\nu)t_0}$. So, π is uniformly exponentially stable.

Definition 2.3 A linear skew-product semiflow $\pi = (\Phi, \sigma)$ on $E = X \times \Theta$ is said to be **unstable** if there exists N > 0 such that $\|\Phi(\theta, t)\| \ge N \|x\|, \ \forall (x, \theta, t) \in E \times \mathbb{R}_+$

Definition 2.4 A linear skew-product semiflow $\pi = (\Phi, \sigma)$ on $E = X \times \Theta$ is said to be **uniformly exponentially unstable** if there exists N > 0 such that $\|\Phi(\theta, t)\| \ge Ne^{\nu t} \|x\|, \ \forall (x, \theta, t) \in E \times \mathbb{R}_+$

Proposition 2.2 Let $\pi = (\Phi, \sigma)$ be a linear skew-product semiflow on $E = X \times \Theta$. If there are $t_0 > 0$ and $\delta > 1$ such that $\|\Phi(\theta, t_0) x\| \ge \delta \|x\|$, $\forall (x, \theta) \in E$ then π is uniformly exponentially unstable.

Proof:

Let $M \ge 1$, $\omega > 0$ be given by definition 2.2. and $\nu > 0$ such that $\delta = e^{\nu t_0}$. Let $(x, \theta) \in E$. For $t \ge 0$ there is $k \in \mathbb{N}$ and $r \in [0, t_0)$ such that $t = kt_0 + r$. Using the cocycle identity and the hypothesis, it follows that

 $\delta^{k+1} \left\| x \right\| \leq \left\| \Phi \left(\theta, \left(k+1 \right) t_0 \right) x \right\| \leq M e^{\omega t_0} \left\| \Phi \left(\theta, t \right) x \right\|.$

Denoting $N = \frac{1}{Me^{\omega t_0}}$, we deduce that $\left\| \Phi(\theta, t) x \right\| \ge Ne^{vt} \|x\|, \forall (x, \theta, t) \in E \times \mathbb{R}_+$ so π is uniformly exponentially unstable.

3. Exponential Dichotomy for Linear Skew-Product Semiflow

Definition 3.1 A mapping $\mathbf{P}: E \to E$ is said to be a **projector** if \mathbf{P} is continuous and has the form $\mathbf{P}(\theta, t) = (P(\theta)x, \theta)$ (3.1)

where $P(\theta)$ is a bounded linear projection on X.

Remark 3.1 $P(\theta): E \to E$ is a bounded linear mapping with the property $P(\theta)P(\theta) = P^2(\theta) = P(\theta)$ for all $\theta \in \Theta$.

Definition 3.2 A projector **P** on E is said to be **invariant** if it satisfies the following property:

$$P(\sigma(\theta,t))\Phi(\theta,t) = \Phi(\theta,t)P(\theta), t \ge 0, \theta \in \Theta$$
(3.2)

Definition 3.3 The mapping $\mathbf{Q}: E \to E$ given by

$$\mathbf{Q}(\mathbf{x},\theta) = (\mathbf{x} - \mathbf{P}(\theta)\mathbf{x},\theta)$$
(3.3)

where P is a linear projection on X, is called the **complementary projector** to \mathbf{P} on E.

For any subset $F \subset E$ we have $F(\theta) := \{x \in X : (x, \theta) \in F\}, \theta \in \Theta$. So $E(\theta) = X, \theta \in \Theta$.

Lema 3.1 Let **P** be a projector on *E*. Then *R* and *N* are closed subsets in *E* and we have: $R(\theta) \cap N(\theta) = \{0\}, R(\theta) + N(\theta) = E(\theta)$ for all $\theta \in \Theta$. **Remark 3.2** One has R(Q) = N(P) and N(Q) = R(P).

Definition 3.4 We say that a linear skew-product semiflow $\pi = (\Phi, \sigma)$ on E has an **exponential dichotomy** over Θ , if there are constants $K \ge 1, \nu > 0$ and invariant projector **P** such that for all $\theta \in \Theta$ we have the following:

(1) $\Phi(\theta, t) : N(P(\theta)) \to N(P(\sigma(\theta, t)))$ is an isomorfism, with inverse

$$\Phi(\sigma(\theta, t), -t): N(P(\sigma(\theta, t))) \to N(P(\theta)), \quad t \ge 0$$
(2) $\|\Phi(\theta, t)P(\theta)\| \le Ke^{-\nu t}, \quad t \ge 0$
(3.4)
(2) $\|E(\theta, t)P(\theta)\| \le Ke^{-\nu t}, \quad t \ge 0$
(3.5)

(3)
$$\left\|\Phi(\theta,t)(I-P(\theta))\right\| \ge Ke^{vt}, t \le 0$$
 (3.5)

Definition 3.4 A linear skew-product semiflow $\pi = (\Phi, \sigma)$ is said to be **uniformly exponentially dichotomic** if there exist a family of projections $\{P(\theta)\}_{\theta\in\Theta} \subset B(X)$ and two constants $K \ge 1$ and $\nu > 0$ such that

(i)
$$\Phi(\theta, t) P(\theta) = P(\sigma(\theta, t)) \Phi(\theta, t)$$
, for all $(\theta, t) \in \Theta \times R_+$

- (ii) $\left\|\Phi(\theta,t)x\right\| \leq \mathcal{K}e^{-\nu t} \left\|x\right\|$, for all $x \in \mathcal{R}(\mathcal{P}(\theta))$ and all $(\theta,t) \in \Theta \times \mathbb{R}_{+}$ (iii) $\left\|\Phi(\theta,t)x\right\| \geq \frac{1}{\mathcal{K}}e^{\nu t} \left\|x\right\|$, for all $x \in \mathcal{N}(\mathcal{P}(\theta))$ and all $(\theta,t) \in \Theta \times \mathbb{R}_{+}$
- (iii) $\|\Phi(\theta, t)X\| \ge \frac{1}{K}e^{-t}\|X\|$, for all $X \in N(P(\theta))$ and all $(\theta, t) \in \Theta \times \mathbb{R}_+$ (iii) the restriction $\Phi(\theta, t) \in \mathcal{N}(P(\theta)) \to \mathcal{N}(P(\theta, t))$ is an isometrized for

(iv) the restriction $\Phi(\theta, t)_{|}: N(P(\theta)) \rightarrow N(P(\sigma(\theta, t)))$ is an isomorfism, for every $(\theta, t) \in \Theta \times \mathbb{R}_{+}$

Proposition 3.1 Let $\pi = (\Phi, \sigma)$ be a strongly continuous skew-product on $E = X \times \Theta$. If π is uniformly exponentially dichotomic relative to the family of projections $\{P(\theta)\}_{\theta \in \Theta}$ then

(i) $\sup_{\theta \in \Theta} \left\| P(\theta) \right\| < \infty$

(ii) for every $(\theta, t) \in \Theta \times \mathbb{R}^*_+$ and every $x \in N(\mathbb{P}(\sigma(\theta, t)))$ the mapping $s \to \Phi(\sigma(\theta, s), t - s)^{-1}_+ x$ is continuous on $[\theta, t]$

(iii) for every $(x, \theta) \in E$ the mapping $t \to P(\sigma(\theta, t)) x$ is continuous on \mathbb{R}_+ . Proof

(i) For every $\theta \in \Theta$ we define

$$\begin{split} &\delta_{\theta} \coloneqq \inf\left\{ \left\| X_{1} + X_{2} \right\| \colon X_{1} \in R\left(P\left(\theta\right)\right), \ X_{2} \in N\left(P\left(\theta\right)\right), \ \left\| X_{1} \right\| = \left\| X_{2} \right\| = 1 \right\}. \\ &\text{Let } \theta \in \Theta \text{ and } X \in X \text{ with } P\left(\theta\right) x \neq 0 \text{ and } \left(I - P\left(\theta\right)\right) x \neq 0 \,. \end{split}$$

Then

$$\delta_{ heta} \leq \left\| rac{P(heta) x}{\left\| P(heta) x
ight\|} + rac{\left(I - P(heta)
ight) x}{\left\| \left(I - P(heta)
ight) x
ight\|}
ight\| =$$

$$\frac{1}{\left\|\mathcal{P}(\theta)x\right\|}\left\|x+\frac{\left\|\mathcal{P}(\theta)x\right\|-\left\|\left(I-\mathcal{P}(\theta)\right)x\right\|}{\left\|\left(I-\mathcal{P}(\theta)\right)x\right\|}\left(I-\mathcal{P}(\theta)\right)x\right\|} \leq \frac{2\left\|x\right\|}{\left\|\mathcal{P}(\theta)x\right\|}$$

It results that $\| P(\theta) x \| \leq \frac{2}{\delta_{\theta}}$, for all $\theta \in \Theta$.

If $x_1 \in R(P(\theta))$ and $x_2 \in N(P(\theta))$ such that $||x_1|| = ||x_2|| = 1$, then, for every $t \ge 0$ we have

$$\|x_1 + x_2\| \geq \frac{1}{M}e^{-\omega t} \|\Phi(\theta, t)x_1 + \Phi(\theta, t)x_2\| \geq \frac{1}{M}e^{-\omega t} \left(\frac{1}{K}e^{\nu t} - Ke^{-\nu t}\right)$$

where M, ω are given by Definition 2.2 and K, ν are given by Definition 3.4. It follows that there is c > 0 such that $\delta_{\theta} \ge c$, for all $\theta \in \Theta$.

(ii) Let $t > 0, \theta \in \Theta$ and $x \in N(P(\sigma(\theta, t)))$. There is $y \in N(P(\theta))$ such that $x = \Phi(\theta, t) y$. Let $s_0 \in [0, t]$. It is easy to see that $\Phi(\sigma(\theta, s), t - s)_{|}^{-1}x - \Phi(\sigma(\theta, s_0), t - s_0)_{|}^{-1}x = \Phi(\theta, s)y - \Phi(\theta, s_0)y \xrightarrow[s \to s_0]{} 0$ (iii) Let $(x, \theta) \in E$. Let $t_0 > 0$. We have that $\|P(\sigma, (\theta, t))x - P(\sigma(\theta, t_0))x\| \le \|P(\sigma(\theta, t))x - P(\sigma(\theta, t))\Phi(\sigma(\theta, t_0), t - t_0)x\| + \|\Phi(\sigma(\theta, t_0), t - t_0)P(\sigma(\theta, t_0))x - P(\sigma(\theta, t_0))x\| \le \sup_{\theta \in \Theta} \|P(\theta)\| \cdot \|\Phi(\sigma(\theta, t_0), t - t_0)P(\sigma(\theta, t_0))x - P(\sigma(\theta, t_0))x\| \to 0$

as $t = t_0$, so the mapping $P(\sigma(\theta,))x$ is right-continuous in t_0 . Let $t < t_0$. Since

$$(I - P(\sigma(\theta, t))) x = \Phi(\sigma(\theta, t), t_0 - t)^{-1} \Phi(\sigma(\theta, t), t_0 - t) (I - P(\sigma(\theta, t))) x = \Phi(\sigma(\theta, t), t_0 - t)^{-1} (I - P(\sigma(\theta, t_0))) \Phi(\sigma(\theta, t), t_0 - t) x \rightarrow (I - P(\sigma(\theta, t_0))) x$$
as $t = t_0$, we obtain that the mapping $P(\sigma(\theta, t)) x$ is left-continuous in t_0 .

Example 3.1

Let us consider $X = \mathbb{R}^2$ with the norm $||(x_1, x_2)|| = |x_1| + |x_2|$. We denote $C(\mathbb{R}_+, \mathbb{R}_+)$ the set of all continuous functions $f:\mathbb{R}_+ \to \mathbb{R}_+$. This space is metrizable with the metric: $d(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{d_n(f,g)}{1+d_n(f,g)}$ where $d_n(f,g) = \sup_{t \in [0,n]} |f(t) - g(t)|$. If $f \in C(\mathbb{R}_+, \mathbb{R})$ then for every $t \in \mathbb{R}_+$ we denote by $f_s(t) = f(t+s)$. Let us consider $\Theta = \{a_s, s \in \mathbb{R}_+\}$ where $a:\mathbb{R}_+ \to \mathbb{R}_+^*$ is a decreasing function with $\alpha := \lim_{t \to \infty} a(t) > 0$. Then (Θ, d) is a metric space and $\sigma(\theta, t)(s) = f(t+s)$ is a semiflow on Θ . Then $\Phi: \Theta \times \mathbb{R}_+ \to B(X)$ is given by

$$\Phi(\theta, t)(x_1, x_2) = \left(e^{-2ta(0) + \int_0^t f(s)ds} x_1, e^{\int_0^t f(s)ds} x_2\right) \text{ and we have that } \pi = (\Phi, \sigma) \text{ is}$$

a linear skew-product semiflow on $E = X \times \Theta$. We consider the projections: $P(x)(x_1, x_2) = (x_1, 0)$, $Q(x)(x_1, x_2) = (0, x_2)$ Following relations hold:

$$\left\|\Phi(\theta,t)P(\theta)x\right\| \le e^{-ta(0)} \left\|P(\theta)x\right\|, \qquad \left\|\Phi(\theta,t)Q(\theta)x\right\| \ge e^{\alpha t} \left\|Q(\theta)x\right\|$$

which proves that the linear skew-product semiflow $\pi = (\Phi, \sigma)$ is uniformly exponentially dichotomic.

4. Exponential Trichotomy Of Linear Skew-Product Semiflows in Banach Spaces

Definition 4.1 We say that a linear skew-product semiflow $\pi = (\Phi, \sigma)$ has **uniform exponential trichotomy** on *E* if there exist three families of projections $(P_0(\theta))_{\theta\in\Theta}$, $(P_1(\theta))_{\theta\in\Theta}$, $(P_2(\theta))_{\theta\in\Theta}$ with characteristics $N_0, N_1, N_2 \ge 1$, $V_1, V_2 > 0$ such that:

- (i) $P_i(\theta)P_j(\theta) = 0$ for $\forall i \neq j$, $i, j \in \{0, 1, 2\}$ and $\forall \theta \in \Theta$ $P_0(\theta) + P_1(\theta) + P_2(\theta) = I$ for $\forall \theta \in \Theta$
- (ii) $\Phi(\theta,t)P_j(\theta) = P_j(\sigma(\theta,t))\Phi(\theta,t)$ for $\forall (\theta,t) \in \Theta \times R_+$ and $\forall x \in X$
- (iii) $||P_0(\theta)x|| \le N_0 ||\Phi(\theta,t)P_0(\theta)x|| \le N_0^2 ||P_0(\theta)x||$ for $\forall (\theta,t) \in \Theta \times \mathbb{R}_+$ and $\forall x \in X$
- (iv) $\left\|\Phi\left(\theta,t\right)P_{1}\left(\theta\right)x\right\| \leq N_{1}e^{-\nu_{1}t}\left\|P_{1}\left(\theta\right)x\right\|$ for $\forall\left(\theta,t\right)\in\Theta\times\mathbb{R}_{+}$ and $\forall x\in X$
- (v) $N_2 \left\| \Phi(\theta, t) P_2(\theta) x \right\| \ge e^{v_2 t} \left\| P_2(\theta) x \right\|$ for $\forall (\theta, t) \in \Theta \times \mathbb{R}_+$ and $\forall x \in X$

Remark 4.1 If we denote $N = \max\{N_0, N_1, N_2\}$ and $\nu = \min\{\nu_1, \nu_2\}$ we have that in definition 1 we can assume that $N_0 = N_1 = N_2 = N$ and $\nu_1 = \nu_2 = \nu$.

Example 4.1 Let $X = \mathbb{R}^3$ with the norm $||(z_1, z_2, z_3)|| = |z_1| + |z_2| + |z_3|$

Let $C = C(R_+, R_+)$ continue the set of all continuous functions $x: R_+ \to R_+$. This space is metrizable with the metric:

$$d(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{d_n(x, y)}{1 + d_n(x, y)} \quad \text{unde } d_n(x, y) = \sup_{t \in [0, n]} |x(t) - y(t)|$$

If $x \in C$ then for every $t \in \mathbb{R}_+$ we denote by $x_t \in C$ the function $x_t(s) = x(t+s)$. Let us consider $\Theta = \overline{\{f_t, t \in \mathbb{R}_+\}}$, where $f : \mathbb{R}_+ \to \mathbb{R}_+^*$ is a decreasing function with $\lim_{t \to \infty} f(t) = \alpha > 0$.

Then (Θ, d) is a metric space and $\sigma: \Theta \times \mathbb{R}_+ \to \Theta$, $\sigma(x, t)(s) = x(t+s)$ is a semiflow on X and $\Phi: \Theta \times \mathbb{R}_+ \to B(X)$ is given by :

$$\Phi(x,t)(z_1,z_2,z_3) = \begin{pmatrix} e^{-2tf(0) + \int_{0}^{t} x(s)ds} & e^{\int_{0}^{t} x(s)ds} & -tf(0) + 2\int_{0}^{t} x(s)ds \\ e^{2tf(0) + \int_{0}^{t} x(s)ds} & z_1, e^{0} & z_2, e^{-tf(0) + 2\int_{0}^{t} x(s)ds} \\ z_1, e^{2tf(0) + \int_{0}^{t} x(s)ds} & z_2 \end{pmatrix}$$

then $\pi = (\Phi, \sigma)$ is a linear skew-product semiflow on $E = X \times \Theta$. We consider the projections :

$$P_{1}(x)(z_{1}, z_{2}, z_{3}) = (z_{1}, 0, 0)$$

$$P_{2}(x)(z_{1}, z_{2}, z_{3}) = (0, z_{2}, 0) , P_{3}(x)(z_{1}, z_{2}, z_{3}) = (0, 0, z_{3})$$
We have $\|\Phi(x, t)P_{1}(x)z\| \le e^{-tf(0)}\|P_{1}(x)z\|$

$$(4.1)$$

$$\|\Phi(x,t)P_2(x)z\| \le e^{\alpha t} \|P_2(x)z\|$$
(4.2)

$$e^{-tf(0)} \|P_3(x)z\| \le \|\Phi(x,t)P_3(x)z\| = e^{tf(0)} \|P_3(x)z\|$$
(4.3)

which proves that the linear skew-product semiflow $\pi = (\Phi, \sigma)$ is uniformly exponentially trichotomic.

Proposition 4.1 A linear skew-product semiflow $\pi = (\Phi, \sigma)$ is uniformly exponentially trichotomic if and only if there exist the constants $N_0, N_1, N_2 \ge 1$, $v_1, v_2 > 0$ and three families of projections $(P_0(\theta))_{\theta \in \Theta}, (P_1(\theta))_{\theta \in \Theta}, (P_2(\theta))_{\theta \in \Theta}$ such that :

(i)'
$$P_i(\theta)P_j(\theta) = 0$$
; $P_0(\theta) + P_1(\theta) + P_2(\theta) = I$ for $\forall i \neq j$ și $\forall \theta \in \Theta$
(ii)' $\Phi(\theta, t)P_j(\theta) = P_j(\sigma(\theta, t))\Phi(\theta, t)$ for $\forall (\theta, t) \in \Theta \times \mathbb{R}_+$ and $\forall x \in X$
(iii)' $\|\Phi(\theta, t)P_j(\theta)\| \leq N \|\Phi(\theta, t+t)P_j(\theta)\| \leq N^2 \|\Phi(\theta, t)P_j(\theta)\|$ for

(iii)' $\|\Phi(\theta, t_0)P_0(\theta)x\| \le N_0 \|\Phi(\theta, t+t_0)P_0(\theta)x\| \le N_0^2 \|\Phi(\theta, t_0)P_0(\theta)x\|$ for $\forall (\theta, t, t_0) \in \Theta \times \mathbb{R}^2_+$ and $\forall x \in X$

(iv) $\left\|\Phi(\theta, t+t_0)P_1(\theta)x\right\| \leq N_1 e^{-v_1 t} \left\|\Phi(\theta, t_0)P_1(\theta)x\right\|$ for $\forall (\theta, t, t_0) \in \Theta \times \mathbb{R}^2_+$ and $\forall x \in X$

(v)'
$$N_2 \|\Phi(\theta, t+t_0)P_2(\theta)x\| \ge e^{v_2 t} \|\Phi(\theta, t_0)P_2(\theta)x\|$$
 for $\forall (\theta, t, t_0) \in \Theta \times \mathbb{R}^2_+$.
Proof

Necessity

The conditions (i)' and (ii)' are exactly (i) and (ii) from definition 1. We will prove first (iii)'

$$\left\| \Phi(\theta, t_0) P_0(\theta) x \right\| = \left\| P_0(\sigma(\theta, t_0) \Phi(\theta, t_0) x) \right\| \le N_0 \left\| \Phi(\sigma(\theta, t_0), t) P_0(\sigma(\theta, t_0)) \Phi(\theta, t_0) x \right\| =$$

$$\begin{split} &= N_{0} \left\| \Phi(\sigma(\theta,t_{0}),t) \Phi(\theta,t_{0}) P_{0}(\theta) x \right\| = N_{0} \left\| \Phi(\theta,t+t_{0}) P_{0}(\theta) x \right\| \\ &= N_{0} \left\| \Phi(\sigma(\theta,t_{0}),t) \Phi(\theta,t_{0}) P_{0}(\theta) x \right\| = N_{0} \left\| \Phi(\sigma(\theta,t_{0}),t) P_{0}(\sigma(\theta,t_{0}) \Phi(\theta,t_{0})) x \right\| \leq \\ &\leq N_{0}^{2} \left\| P_{0}(\sigma(\theta,t_{0})) \Phi(\theta,t_{0}) x \right\| = N_{0}^{2} \left\| \Phi(\theta,t_{0}) P_{0}(\theta) x \right\| \\ &\text{Using (iv) from definition 1 we have :} \\ &\left\| \Phi(\theta,t+t_{0}) P_{1}(\theta) x \right\| = \left\| \Phi(\sigma(\theta,t_{0}),t) \Phi(\theta,t_{0}) P_{1}(\theta) x \right\| \\ &= \left\| \Phi(\sigma(\theta,t_{0}),t) P_{1}(\sigma(\theta,t_{0}) \Phi(\theta,t_{0}) x) \right\| \\ &\leq N_{1} e^{-\nu_{1} t} \left\| P_{1}(\sigma(\theta,t_{0})) \Phi(\theta,t_{0}) x \right\| = N_{1} e^{-\nu_{1} t} \left\| \Phi(\theta,t_{0}) P_{1}(\theta) x \right\| \quad \text{and we obtain (iv').} \\ &\text{Simillary} \\ &N_{2} \left\| \Phi(\sigma(\theta,t_{0}),t) P_{2}(\sigma(\theta,t_{0})) \Phi(\theta,t_{0}) x \right\| \geq e^{\nu_{2} t} \left\| P_{2}(\sigma(\theta,t_{0})) \Phi(\theta,t_{0}) x \right\| \\ &= e^{\nu_{2} t} \left\| \Phi(\theta,t_{0}) P_{2}(\theta) x \right\| \\ &= Sufficiency \text{ is trivial.} \end{split}$$

Proposition 4.2 The conditions (iv)' and (v)' from propositions 1 are equivalent with :

(iv)" there exists a function $f: \mathbb{R}_+ \to (0, \infty)$ cu $\lim_{t\to\infty} f(t) = 0$ such that:

$$\left\|\Phi\left(\theta,t+t_{0}\right)P_{1}\left(\theta\right)x\right\|\leq f\left(t\right)\left\|\Phi\left(\theta,t_{0}\right)P_{1}\left(\theta\right)x\right\|$$

for all $(\theta, t, t_0) \in \Theta \times \mathbb{R}^2_+$ and all $x \in X$

(v)' there exist a function $g: \mathbb{R}_+ \to (0, \infty)$ with $\lim_{t \to \infty} g(t) = \infty$ such that :

$$\left\|\Phi\left(\theta,t+t_{0}\right)P_{2}\left(\theta\right)x\right\|\geq g\left(t\right)\left\|\Phi\left(\theta,t_{0}\right)P_{2}\left(\theta\right)x\right\|$$

for all $(\theta, t, t_0) \in \Theta \times \mathsf{R}^2_+$ and all $x \in X$.

Proposition 4.3

 $\forall x \in X$

A linear skew-product semiflow π is uniformly exponentially trichotomic if and only if there exist the constants $N_1, N_2, N_3, N_4 \ge 1$, $v_1, v_2 > 0$ and two families of projectors $(P(\theta))_{a \in \Theta}$, $(Q(\theta))_{a \in \Theta}$ such that :

(i)
$$P(\theta)Q(\theta) = Q(\theta)P(\theta)$$
, for all $\theta \in \Theta$
(ii) $\Phi(\theta,t)P(\theta) = P(\sigma(\theta,t))\Phi(\theta,t)$
 $\Phi(\theta,t)Q(\theta) = Q(\sigma(\theta,t))\Phi(\theta,t)$ for $\forall \theta \in \Theta$ and $t \in \mathbb{R}_+$.
(iii) $\|\Phi(\theta,t+t_0)P(\theta)x\| \le N_1 e^{-\nu_1 t} \|\Phi(\theta,t_0)P(\theta)x\|$ for $\forall (\theta,t,t_0) \in \Theta \times \mathbb{R}^2_+$ and

- (iv) $N_2 \| \Phi(\theta, t+t_0) Q(\theta) x \| \ge e^{v_2 t} \| \Phi(\theta, t_0) Q(\theta) x \|$ for $\forall (\theta, t, t_0) \in \Theta \times \mathsf{R}^2_+$ and $\forall x \in X$
- (v) $\|\Phi(\theta, t+t_0)(I-Q(\theta)x\| \le N_3 \|\Phi(\theta, t_0)(I-Q(\theta))x\|$ for $\forall (\theta, t, t_0) \in \Theta \times \mathbb{R}^2_+$ and $\forall x \in X$
- (vi) $N_4 \| \Phi(\theta, t+t_0)(I-P(\theta))x \| \ge \| \Phi(\theta, t_0)(I-P(\theta))x \|$ for $\forall (\theta, t, t_0) \in \Theta \times \mathbb{R}^2_+$ and $\forall x \in X$

References

- [1] Chicone, C., Latushkin, Y., Evolution semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs 70 American Mathematical Society, 1999
- [2] Chow, S. N., Leiva, H. Existence and roughness of exponential dichotomy for linear skew-product semiflow in Banach spaces, J. Differential Equations 120 (1995), 429-477
- [3] Chow, S. N., Leiva, H. "Two definitions of exponential dichotomy for skew-product semiflow in Banach spaces", Proceeding of the American Mathematical Society, volume 124, number 4, 1996, 1071-1081
- [4] Megan, M., Sasu, A.L. On uniform exponential stability of linear skewproduct semiflows in Banach spaces, Bulletin Belgian Mathematical Society Simon Stevin 9 (2002) 143-154
- [5] Megan, M., Sasu, A.L., Sasu, B. Banach function spaces and exponential instability of evolution families, Arch. Math. (Brno) 39 (2003), 277-286
- [6] Megan, M., Sasu, A.L., Sasu, B., On uniform exponential unstability of linear skew-product semiflows, Seminar on Mathematical Analysis and Applications in Control Theory, University of the West, Timişoara, 2002
- [7] Megan, M., Stoica, C., Buliga, L., Trichotomy for linear skew-product semiflows, International Conference on Applied Analzsis an Differential Equations, Iaşi 2006
- [8] Sasu A. L, Admisibilitate şi proprietăţi asimptotice ale cociclilor, Editura Politehnica Timişoara, 2005

Addresses:

- Assoc. Prof. Drd. Andrea A. Minda, "Eftimie Murgu" University of Reşiţa, Romania, Piaţa "Traian Vuia", nr. 1-4, Reşiţa, andreaminda@yahoo.com
- Asist.univ. drd. Mihaela Tomescu, University of Petrosani , mihaela tomescu2000@yahoo.com