ANALELE UNIVERSITĂȚII
"EFTIMIE MURGU" REŞIȚA

ANUL XIII, NR. 1, 2006, ISSN 1453-7397
Andrea A. Minda, Mihaela A. Tomescu

On Asymptotic Behaviors for Linear Skew-Product Semiflows in Banach Spaces

In this paper we give several characterizations of some asymptotic behaviours: stability, instability, dichotomy and trichotomy of linear skew product semiflows in Banach spaces. The obtained results are generalizations of some well-known results on asymptotic behaviours of linear differential equations. There are also presented several examples of semiflows and linear skew-product semiflows in Banach spaces.

1. Linear skew-product semiflow

Let X be a Banach space, let (Θ, d) be a metric space and let $E=X \times \Theta$. We shall denote by $B(X)$ the Banach algebra of all bounded linear operators from X into itself. Throughout the paper, de norm on X and on $B(X)$ will be denoted by $\|\cdot\|$.

Definition 1.1 A continuous mapping $\sigma: \Theta \times \mathrm{R}_{+} \rightarrow \Theta$ is said to be a semiflow on Θ, if it has the following properties:
(i) $\sigma(\theta, 0)=\theta, \forall \theta \in \Theta$
(ii) $\sigma(\theta, s+t)=\sigma(\sigma(\theta, s), t)$ for $\forall(\theta, s, t) \in \Theta \times \mathrm{R}_{+}^{2}$

Definition 1.2 A pair $\pi=(\Phi, \sigma)$ is called linear skew-product semiflow on $E=X \times \Theta$ if σ is a semiflow on Θ and $\Phi: \Theta \times \mathrm{R}_{+} \rightarrow B(X)$ satisfies the following conditions:
(i) $\Phi(\theta, 0)=I$, the identity operator on $X, \forall \theta \in \Theta$
(ii) $\Phi(\theta, t+s)=\Phi(\sigma(\theta, s), t) \Phi(\theta, s)$ for all $(\theta, t, s) \in \Theta \times \mathrm{R}_{+}^{2}$ (the cocycle identity)
(iii) $\exists M \geq 1$ and $\omega>0$ such that $\|\Phi(\theta, t)\| \leq M e^{\omega t}$ for $\forall(\theta, t) \in \Theta \times \mathrm{R}_{+}$

If, in addition,
(iv) for every $(x, \theta) \in E$ the mapping $t \rightarrow \Phi(\theta, t) x$ is continuous then π is called a strongly continuous linear skew-product semiflow.

Remark 1.1 Statement (iii) is equivalent with the following
(iii)' there exist a nondecreasing function $f: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}^{*}$ such that $\|\Phi(\theta, t)\| \leq f(t)$ for all $(\theta, t) \in \theta \times \mathrm{R}_{+}$.
Remark 1.2 If $\pi=(\Phi, \sigma)$ is a linear skew-product semiflow on $E=X \times \Theta$ then for every $\lambda \in \mathrm{R}$ the pair $\pi_{\lambda}=\left(\Phi_{\lambda}, \sigma\right)$, where $\Phi_{\lambda}(\theta, t)=e^{-\lambda t} \Phi(\theta, t)$ for all $(\theta, t) \in \Theta \times \mathrm{R}_{+}$, is also a linear skew-product semiflow called the shifted skew product semiflow on $E=X \times \Theta$.

Example 1.1
Let X be a Banach space. We consider $C\left(\mathrm{R}_{+}, \mathrm{R}\right)$ the space of all continuous functions $f: \mathrm{R}_{+} \rightarrow \mathrm{R}$. This space is metrizable with the metric
$d(f, g)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot \frac{d_{n}(f, g)}{1+d_{n}(f, g)} \quad$ where $d_{n}(f, g)=\sup _{t \in[0, n]}|f(t)-g(t)|$.
Let $a: R_{+} \rightarrow R_{+}$be a uniformly continuous, decreasing function such that there exists $\alpha:=\lim _{t \rightarrow \infty} a(t)>0$. If we denote by $a_{s}(t)=a(t+s)$ and by $\Theta=\overline{\left\{a_{s}: s \in \mathrm{R}_{+}\right\}}$ then $\sigma(\theta, t)(s):=\theta(t+s)$ is a semiflow on Θ, for $\Phi: \Theta \times \mathrm{R}_{+} \rightarrow B(X)$, $\Phi(\theta, t) X=e^{\int_{0}^{t 0} \theta(\tau) d \tau} X$ we have that $\pi=(\Phi, \sigma)$ is a linear skew-product semiflow on $E=X \times \Theta$.

2. Stability for Skew - Product Semiflows

Definition 2.1 A linear skew-product semiflow $\pi=(\Phi, \sigma)$ on $E=X \times \Theta$ is said to be stable if there exists $N>0$ such that

$$
\|\Phi(\theta, t)\| \leq N, \quad \forall(\theta, t) \in \Theta \times \mathrm{R}_{+}
$$

Definition 2.2 A linear skew-product semiflow $\pi=(\Phi, \sigma)$ on $E=X \times \Theta$ is uniformly exponentially stable if there are $N, v>0$ such that

$$
\|\Phi(\theta, t)\| \leq N e^{-v t}, \quad \forall(\theta, t) \in \Theta \times \mathrm{R}_{+}
$$

Proposition 2.1 Let $\pi=(\Phi, \sigma)$ be a linear skew-product semiflow on $E=X \times \Theta$. If there are $t_{0}>0$ and $c \in(0,1)$ such that $\left\|\Phi\left(\theta, t_{0}\right)\right\| \leq c$ for $\forall \theta \in \Theta$, than π is uniformly exponentially stable.

Proof
Let $M \geq 1$ and $\omega>0$ be given by definition 2.2 . and v be a pozitive number such that $\quad C=e^{-v t_{0}}$.
Let $\theta \in \Theta$ be fixed. For $t \geq 0$ there are $n \in \mathrm{~N}$ and $r \in\left[0, t_{0}\right]$ such that $t=n t_{0}+r$. Than we obtain :

$$
\|\Phi(\theta, t)\| \leq\left\|\Phi\left(\sigma\left(\theta, n t_{0}\right), r\right)\right\|\left\|\Phi\left(\theta, n t_{0}\right)\right\| \leq M e^{\omega t_{0}} e^{-n \nu t_{0}} \leq N e^{-v t}
$$

Where $N=M e^{(\omega+v) t_{0}}$. So, π is uniformly exponentially stable.
Definition 2.3 A linear skew-product semiflow $\pi=(\Phi, \sigma)$ on $E=X \times \Theta$ is said to be unstable if there exists $N>0$ such that $\|\Phi(\theta, t)\| \geq N\|x\|, \quad \forall(x, \theta, t) \in E \times \mathrm{R}_{+}$

Definition 2.4 A linear skew-product semiflow $\pi=(\Phi, \sigma)$ on $E=X \times \Theta$ is said to be uniformly exponentially unstable if there exists $N>0$ such that $\|\Phi(\theta, t)\| \geq N e^{\nu t}\|x\|, \quad \forall(x, \theta, t) \in E \times \mathrm{R}_{+}$

Proposition 2.2 Let $\pi=(\Phi, \sigma)$ be a linear skew-product semiflow on $E=X \times \Theta$. If there are $t_{0}>0$ and $\delta>1$ such that $\left\|\Phi\left(\theta, t_{0}\right) x\right\| \geq \delta\|x\|, \forall(x, \theta) \in E$ then π is uniformly exponentially unstable.

Proof:
Let $M \geq 1, \omega>0$ be given by definition 2.2. and $v>0$ such that $\delta=e^{\nu t_{0}}$. Let $(x, \theta) \in E$. For $t \geq 0$ there is $k \in \mathrm{~N}$ and $r \in\left[0, t_{0}\right)$ such that $t=k t_{0}+r$. Using the cocycle identity and the hypothesis, it follows that

$$
\delta^{k+1}\|x\| \leq\left\|\Phi\left(\theta_{,}(k+1) t_{0}\right) x\right\| \leq M e^{\omega t_{0}}\|\Phi(\theta, t) x\| .
$$

Denoting $N=\frac{1}{M e^{\omega t_{0}}}$, we deduce that $\|\Phi(\theta, t) x\| \geq N e^{\nu t}\|x\|, \forall(x, \theta, t) \in E \times \mathrm{R}_{+}$
so π is uniformly exponentially unstable.

3. Exponential Dichotomy for Linear Skew-Product Semiflow

Definition 3.1 A mapping $\mathbf{P}: E \rightarrow E$ is said to be a projector if \mathbf{P} is continuous and has the form $\quad \mathbf{P}(\theta, t)=(P(\theta) x, \theta)$
where $P(\theta)$ is a bounded linear projection on X.
Remark $3.1 P(\theta): E \rightarrow E$ is a bounded linear mapping with the property $P(\theta) P(\theta)=P^{2}(\theta)=P(\theta)$ for all $\theta \in \Theta$.
Definition 3.2 A projector \mathbf{P} on E is said to be invariant if it satisfies the following property:

$$
\begin{equation*}
P(\sigma(\theta, t)) \Phi(\theta, t)=\Phi(\theta, t) P(\theta), t \geq 0, \theta \in \Theta \tag{3.2}
\end{equation*}
$$

Definition 3.3 The mapping $\mathbf{Q}: E \rightarrow E$ given by

$$
\begin{equation*}
\mathbf{Q}(x, \theta)=(x-P(\theta) x, \theta) \tag{3.3}
\end{equation*}
$$

where P is a linear projection on X, is called the complementary projector to \mathbf{P} on E.

For any subset $F \subset E$ we have $F(\theta):=\{x \in X:(x, \theta) \in F\}, \theta \in \Theta$. So $E(\theta)=X, \theta \in \Theta$.
Lema 3.1 Let \mathbf{P} be a projector on E. Then R and N are closed subsets in E and we have: $\quad R(\theta) \cap N(\theta)=\{0\}, R(\theta)+N(\theta)=E(\theta)$ for all $\theta \in \Theta$.
Remark 3.2 One has $R(Q)=N(P)$ and $N(Q)=R(P)$.

Definition 3.4 We say that a linear skew-product semiflow $\pi=(\Phi, \sigma)$ on E has an exponential dichotomy over Θ, if there are constants $K \geq 1, v>0$ and invariant projector \mathbf{P} such that for all $\theta \in \Theta$ we have the following:
(1) $\Phi(\theta, t): N(P(\theta)) \rightarrow N(P(\sigma(\theta, t)))$ is an isomorfism, with inverse
$\Phi(\sigma(\theta, t),-t): N(P(\sigma(\theta, t))) \rightarrow N(P(\theta)), \quad t \geq 0$
(2) $\|\Phi(\theta, t) P(\theta)\| \leq K e^{-v t}, t \geq 0$
(3) $\|\Phi(\theta, t)(I-P(\theta))\| \geq K e^{\nu t}, t \leq 0$

Definition 3.4 A linear skew-product semiflow $\pi=(\Phi, \sigma)$ is said to be uniformly exponentially dichotomic if there exist a family of projections $\{P(\theta)\}_{\theta \in \Theta} \subset B(X)$ and two constants $K \geq 1$ and $v>0$ such that
(i) $\Phi(\theta, t) P(\theta)=P(\sigma(\theta, t)) \Phi(\theta, t)$, for all $(\theta, t) \in \Theta \times \mathrm{R}_{+}$
(ii) $\|\Phi(\theta, t) x\| \leq K e^{-v t}\|x\|$, for all $x \in R(P(\theta))$ and all $(\theta, t) \in \Theta \times \mathrm{R}_{+}$
(iii) $\|\Phi(\theta, t) x\| \geq \frac{1}{K} e^{\nu t}\|x\|$, for all $x \in N(P(\theta))$ and all $(\theta, t) \in \Theta \times \mathrm{R}_{+}$
(iv) the restriction $\Phi(\theta, t)_{\mid}: N(P(\theta)) \rightarrow N(P(\sigma(\theta, t)))$ is an isomorfism, for every $(\theta, t) \in \Theta \times \mathrm{R}_{+}$
Proposition 3.1 Let $\pi=(\Phi, \sigma)$ be a strongly continuous skew-product on $E=X \times \Theta$. If π is uniformly exponentially dichotomic relative to the family of projections $\{P(\theta)\}_{\theta \in \Theta}$ then
(i) $\sup _{\theta \in \Theta}\|P(\theta)\|<\infty$
(ii) for every $(\theta, t) \in \Theta \times \mathrm{R}_{+}^{*}$ and every $x \in N(\mathrm{P}(\sigma(\theta, t)))$ the mapping $s \rightarrow \Phi(\sigma(\theta, s), t-s)^{-1} x$ is continuous on $[\theta, t]$
(iii) for every $(x, \theta) \in E$ the mapping $t \rightarrow P(\sigma(\theta, t)) x$ is continuous on R_{+}.

Proof
(i) For every $\theta \in \Theta$ we define
$\delta_{\theta}:=\inf \left\{\left\|x_{1}+x_{2}\right\|: x_{1} \in R(P(\theta)), x_{2} \in N(P(\theta)),\left\|x_{1}\right\|=\left\|x_{2}\right\|=1\right\}$.
Let $\theta \in \Theta$ and $x \in X$ with $P(\theta) x \neq 0$ and $(I-P(\theta)) x \neq 0$.

Then

$$
\delta_{\theta} \leq\left\|\frac{P(\theta) x}{\|P(\theta) x\|}+\frac{(I-P(\theta)) x}{\|(I-P(\theta)) x\|}\right\|=
$$

$\frac{1}{\|P(\theta) x\|}\left\|x+\frac{\|P(\theta) x\|-\|(I-P(\theta)) x\|}{\|(I-P(\theta)) x\|}(I-P(\theta)) x\right\| \leq \frac{2\|x\|}{\|P(\theta) x\|}$
It results that $\|\mathrm{P}(\theta) x\| \leq \frac{2}{\delta_{\theta}}$, for all $\theta \in \Theta$.
If $x_{1} \in R(P(\theta))$ and $x_{2} \in N(P(\theta))$ such that $\left\|x_{1}\right\|=\left\|x_{2}\right\|=1$, then, for every $t \geq 0$ we have

$$
\left\|x_{1}+x_{2}\right\| \geq \frac{1}{\mathrm{M}} e^{-\omega t}\left\|\Phi(\theta, t) x_{1}+\Phi(\theta, t) x_{2}\right\| \geq \frac{1}{\mathrm{M}} e^{-\omega t}\left(\frac{1}{K} e^{\nu t}-K e^{-r t}\right)
$$

where M, ω are given by Definition 2.2 and K, v are given by Definition 3.4. It follows that there is $c>0$ such that $\delta_{\theta} \geq c$, for all $\theta \in \Theta$.
(ii) Let $t>0, \theta \in \Theta$ and $x \in N(P(\sigma(\theta, t)))$. There is $y \in N(P(\theta))$ such that $x=\Phi(\theta, t) y$.
Let $s_{0} \in[0, t]$. It is easy to see that

$$
\Phi(\sigma(\theta, s), t-s)_{\mid}^{-1} x-\Phi\left(\sigma\left(\theta, s_{0}\right), t-s_{0}\right)_{\mid}^{-1} x=\Phi(\theta, s) y-\Phi\left(\theta, s_{0}\right) y \xrightarrow[s \rightarrow s_{0}]{ } 0
$$

(iii) Let $(x, \theta) \in E$. Let $t_{0}>0$. We have that

$$
\begin{aligned}
& \left\|P(\sigma,(\theta, t)) x-P\left(\sigma\left(\theta, t_{0}\right)\right) x\right\| \leq\left\|P(\sigma(\theta, t)) x-P(\sigma(\theta, t)) \Phi\left(\sigma\left(\theta, t_{0}\right), t-t_{0}\right) x\right\|+ \\
& \left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t-t_{0}\right) P\left(\sigma\left(\theta, t_{0}\right)\right) x-P\left(\sigma\left(\theta, t_{0}\right)\right) x\right\| \leq \\
& \quad \sup _{\theta \in \Theta}\|P(\theta)\| \cdot\left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t-t_{0}\right) x-x\right\|+ \\
& \left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t-t_{0}\right) P\left(\sigma\left(\theta, t_{0}\right)\right) x-P\left(\sigma\left(\theta, t_{0}\right)\right) x\right\| \rightarrow 0
\end{aligned}
$$

as $t \square t_{0}$, so the mapping $P(\sigma(\theta, \square)) x$ is right-continuous in t_{0}.
Let $t<t_{0}$. Since

$$
\begin{aligned}
& (I-P(\sigma(\theta, t))) x=\Phi\left(\sigma(\theta, t), t_{0}-t\right)^{-1} \Phi\left(\sigma(\theta, t), t_{0}-t\right)(I-P(\sigma(\theta, t))) x= \\
& \Phi\left(\sigma(\theta, t), t_{0}-t\right)^{-1}\left(I-P\left(\sigma\left(\theta, t_{0}\right)\right)\right) \Phi\left(\sigma(\theta, t), t_{0}-t\right) x \rightarrow\left(I-P\left(\sigma\left(\theta, t_{0}\right)\right)\right) x
\end{aligned}
$$

as $t \square t_{0}$, we obtain that the mapping $P(\sigma(\theta, \square)) x$ is left-continuous in t_{0}.

Example 3.1
Let us consider $X=\mathrm{R}^{2}$ with the norm $\left\|\left(x_{1}, x_{2}\right)\right\|=\left|x_{1}\right|+\left|x_{2}\right|$. We denote $C\left(\mathrm{R}_{+}, \mathrm{R}_{+}\right)$ the set of all continuous functions $f: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$. This space is metrizable with the metric: $\quad d(f, g)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot \frac{d_{n}(f, g)}{1+d_{n}(f, g)}$ where $d_{n}(f, g)=\sup _{t \in[0, n]}|f(t)-g(t)|$.
If $f \in C\left(R_{+}, R\right)$ then for every $t \in \mathrm{R}_{+}$we denote by $f_{s}(t)=f(t+s)$. Let us consider $\Theta=\left\{a_{s}, s \in R_{+}\right\}$where $a: R_{+} \rightarrow R_{+}^{*}$ is a decreasing function with $\alpha:=\lim _{t \rightarrow \infty} a(t)>0$. Then (Θ, d) is a metric space and $\sigma(\theta, t)(s)=f(t+s)$ is a semiflow on Θ. Then $\Phi: \Theta \times \mathrm{R}_{+} \rightarrow B(X)$ is given by $\Phi(\theta, t)\left(x_{1}, x_{2}\right)=\left(e^{-2 t a(0)+\int_{0}^{t} f(s) d s} x_{1}, e^{\int_{0}^{t} f(s) d s} x_{2}\right)$ and we have that $\pi=(\Phi, \sigma)$ is a linear skew-product semiflow on $E=X \times \Theta$. We consider the projections:
$P(x)\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$,
$Q(x)\left(x_{1}, x_{2}\right)=\left(0, x_{2}\right)$

Following relations hold:

$$
\|\Phi(\theta, t) P(\theta) x\| \leq e^{-t a(0)}\|P(\theta) x\|, \quad \quad\|\Phi(\theta, t) Q(\theta) x\| \geq e^{\alpha t}\|Q(\theta) x\|
$$

which proves that the linear skew-product semiflow $\pi=(\Phi, \sigma)$ is uniformly exponentially dichotomic.

4. Exponential Trichotomy Of Linear Skew-Product Semiflows in Banach Spaces

Definition 4.1 We say that a linear skew-product semiflow $\pi=(\Phi, \sigma)$ has uniform exponential trichotomy on E if there exist three families of projections $\left(P_{0}(\theta)\right)_{\theta \in \Theta},\left(P_{1}(\theta)\right)_{\theta \in \Theta},\left(P_{2}(\theta)\right)_{\theta \in \Theta}$ with characteristics $N_{0}, N_{1}, N_{2} \geq 1$, $v_{1}, v_{2}>0$ such that:
(i) $\quad P_{i}(\theta) P_{j}(\theta)=0$ for $\forall i \neq j, i, j \in\{0,1,2\}$ and $\forall \theta \in \Theta$

$$
P_{0}(\theta)+P_{1}(\theta)+P_{2}(\theta)=I \text { for } \forall \theta \in \Theta
$$

(ii) $\Phi(\theta, t) P_{j}(\theta)=P_{j}(\sigma(\theta, t)) \Phi(\theta, t)$ for $\forall(\theta, t) \in \Theta \times \mathrm{R}_{+}$and $\forall x \in X$
(iii) $\left\|P_{0}(\theta) x\right\| \leq N_{0}\left\|\Phi(\theta, t) P_{0}(\theta) x\right\| \leq N_{0}^{2}\left\|P_{0}(\theta) x\right\| \quad$ for $\quad \forall(\theta, t) \in \Theta \times \mathrm{R}_{+} \quad$ and $\forall x \in X$
(iv) $\left\|\Phi(\theta, t) P_{1}(\theta) x\right\| \leq N_{1} e^{-v_{1} t}\left\|P_{1}(\theta) x\right\|$ for $\forall(\theta, t) \in \Theta \times \mathrm{R}_{+}$and $\forall x \in X$
(v) $\quad N_{2}\left\|\Phi(\theta, t) P_{2}(\theta) x\right\| \geq e^{v_{2} t}\left\|P_{2}(\theta) x\right\|$ for $\forall(\theta, t) \in \Theta \times \mathrm{R}_{+}$and $\forall x \in X$

Remark 4.1 If we denote $N=\max \left\{N_{0}, N_{1}, N_{2}\right\}$ and $v=\min \left\{\nu_{1}, \nu_{2}\right\}$ we have that in definition 1 we can assume that $N_{0}=N_{1}=N_{2}=N$ and $v_{1}=v_{2}=v$.
Example 4.1 Let $X=\mathrm{R}^{3}$ with the norm $\left\|\left(z_{1}, z_{2}, z_{3}\right)\right\|=\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|$
Let $C=C\left(\mathrm{R}_{+}, \mathrm{R}_{+}\right)$continue the set of all continuous functions $x: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$. This space is metrizable with the metric:
$d(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot \frac{d_{n}(x, y)}{1+d_{n}(x, y)} \quad$ unde $d_{n}(x, y)=\sup _{t \in[0, n]}|x(t)-y(t)|$
If $x \in C$ then for every $t \in \mathrm{R}_{+}$we denote by $x_{t} \in C$ the function $x_{t}(s)=x(t+s)$. Let us consider $\Theta=\overline{\left\{f_{t}, t \in \mathrm{R}_{+}\right\}}$, where $f: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}^{*}$ is a decreasing function with $\lim _{t \rightarrow \infty} f(t)=\alpha>0$.

Then (Θ, d) is a metric space and $\sigma: \Theta \times \mathrm{R}_{+} \rightarrow \Theta, \sigma(x, t)(s)=x(t+s)$ is a semiflow on X and $\Phi: \Theta \times \mathrm{R}_{+} \rightarrow B(X)$ is given by :
$\Phi(x, t)\left(z_{1}, z_{2}, z_{3}\right)=\left(e^{\substack{-2 f(0)+f(x) d s \\ 0}} z_{1}, e^{\substack{\int_{0} x(s) d s}} z_{2}, e^{-t f(0)+2 \int_{0}^{t} x(s) d s} z_{3}\right)$
then $\pi=(\Phi, \sigma)$ is a linear skew-product semiflow on $E=X \times \Theta$. We consider the projections :
$P_{1}(x)\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}, 0,0\right)$
$P_{2}(x)\left(z_{1}, z_{2}, z_{3}\right)=\left(0, z_{2}, 0\right), P_{3}(x)\left(z_{1}, z_{2}, z_{3}\right)=\left(0,0, z_{3}\right)$
We have $\left\|\Phi(x, t) P_{1}(x) z\right\| \leq e^{-t f(0)}\left\|P_{1}(x) z\right\|$

$$
\begin{align*}
& \left\|\Phi(x, t) P_{2}(x) z\right\| \leq e^{\alpha t}\left\|P_{2}(x) z\right\| \tag{4.2}\\
& e^{-t f(0)}\left\|P_{3}(x) z\right\| \leq\left\|\Phi(x, t) P_{3}(x) z\right\|=e^{t f(0)}\left\|P_{3}(x) z\right\|
\end{align*}
$$

which proves that the linear skew-product semiflow $\pi=(\Phi, \sigma)$ is uniformly exponentially trichotomic.
Proposition 4.1 A linear skew-product semiflow $\pi=(\Phi, \sigma)$ is uniformly exponentially trichotomic if and only if there exist the constants $N_{0}, N_{1}, N_{2} \geq 1$, $v_{1}, v_{2}>0$ and three families of projections $\left(P_{0}(\theta)\right)_{\theta \in \Theta},\left(P_{1}(\theta)\right)_{\theta \in \Theta},\left(P_{2}(\theta)\right)_{\theta \in \Theta}$ such that:
(i)' $\quad P_{i}(\theta) P_{j}(\theta)=0 ; P_{0}(\theta)+P_{1}(\theta)+P_{2}(\theta)=I \quad$ for $\forall i \neq j$ şi $\forall \theta \in \Theta$
(ii)' $\Phi(\theta, t) P_{j}(\theta)=P_{j}(\sigma(\theta, t)) \Phi(\theta, t)$ for $\forall(\theta, t) \in \Theta \times \mathrm{R}_{+}$and $\forall x \in X$
(iii) $\left\|\Phi\left(\theta, t_{0}\right) P_{0}(\theta) x\right\| \leq N_{0}\left\|\Phi\left(\theta, t+t_{0}\right) P_{0}(\theta) x\right\| \leq N_{0}^{2}\left\|\Phi\left(\theta, t_{0}\right) P_{0}(\theta) x\right\|$ for $\forall\left(\theta, t, t_{0}\right) \in \Theta \times \mathrm{R}_{+}^{2}$ and $\quad \forall x \in X$
(iv) $\left\|\Phi\left(\theta, t+t_{0}\right) P_{1}(\theta) x\right\| \leq N_{1} e^{-v_{1} t}\left\|\Phi\left(\theta, t_{0}\right) P_{1}(\theta) x\right\|$ for $\forall\left(\theta, t, t_{0}\right) \in \Theta \times \mathrm{R}_{+}^{2}$ and $\forall x \in X$
$(\mathrm{v})^{\prime} \quad N_{2}\left\|\Phi\left(\theta, t+t_{0}\right) P_{2}(\theta) x\right\| \geq e^{v_{2} t}\left\|\Phi\left(\theta, t_{0}\right) P_{2}(\theta) x\right\|$ for $\forall\left(\theta, t, t_{0}\right) \in \Theta \times \mathrm{R}_{+}^{2}$.
Proof
Necessity
The conditions (i)' and (ii)' are exactly (i) and (ii) from definition 1.
We will prove first (iii)'
$\left\|\Phi\left(\theta, t_{0}\right) P_{0}(\theta) x\right\|=\left\|P_{0}\left(\sigma\left(\theta, t_{0}\right) \Phi\left(\theta, t_{0}\right) x\right)\right\| \leq$
$N_{0}\left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t\right) P_{0}\left(\sigma\left(\theta, t_{0}\right)\right) \Phi\left(\theta, t_{0}\right) x\right\|=$

$$
\begin{aligned}
& =N_{0}\left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t\right) \Phi\left(\theta, t_{0}\right) P_{0}(\theta) x\right\|=N_{0}\left\|\Phi\left(\theta, t+t_{0}\right) P_{0}(\theta) x\right\| \\
& =N_{0}\left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t\right) \Phi\left(\theta, t_{0}\right) P_{0}(\theta) x\right\|=N_{0}\left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t\right) P_{0}\left(\sigma\left(\theta, t_{0}\right) \Phi\left(\theta, t_{0}\right)\right) x\right\| \leq \\
& \leq N_{0}^{2}\left\|P_{0}\left(\sigma\left(\theta, t_{0}\right)\right) \Phi\left(\theta, t_{0}\right) x\right\|=N_{0}^{2}\left\|\Phi\left(\theta, t_{0}\right) P_{0}(\theta) x\right\|
\end{aligned}
$$

Using (iv) from definition 1 we have :

$$
\begin{aligned}
& \left\|\Phi\left(\theta, t+t_{0}\right) P_{1}(\theta) x\right\|=\left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t\right) \Phi\left(\theta, t_{0}\right) P_{1}(\theta) x\right\| \\
& =\left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t\right) P_{1}\left(\sigma\left(\theta, t_{0}\right) \Phi\left(\theta, t_{0}\right) x\right)\right\| \\
& \leq N_{1} e^{-\gamma_{1}}\left\|P_{1}\left(\sigma\left(\theta, t_{0}\right)\right) \Phi\left(\theta, t_{0}\right) x\right\|=N_{1} e^{-\nu_{1} t}\left\|\Phi\left(\theta, t_{0}\right) P_{1}(\theta) x\right\| \text { and we obtain (iv'). }
\end{aligned}
$$

Simillary

$$
N_{2}\left\|\Phi\left(\theta, t+t_{0}\right) P_{2}(\theta) x\right\|=N_{2}\left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t\right) \Phi\left(\theta, t_{0}\right) P_{2}(\theta) x\right\|
$$

$$
=N_{2}\left\|\Phi\left(\sigma\left(\theta, t_{0}\right), t\right) P_{2}\left(\sigma\left(\theta, t_{0}\right)\right) \Phi\left(\theta, t_{0}\right) x\right\| \geq e^{v_{2} t}\left\|P_{2}\left(\sigma\left(\theta, t_{0}\right)\right) \Phi\left(\theta, t_{0}\right) x\right\|
$$

$$
=e^{v_{2} t}\left\|\Phi\left(\theta, t_{0}\right) P_{2}(\theta) x\right\|
$$

Sufficiency is trivial.
Proposition 4.2 The conditions (iv)' and (v)' from propositions 1 are equivalent with :
(iv)" there exists a function $f: \mathrm{R}_{+} \rightarrow(0, \infty)$ cu $\lim _{t \rightarrow \infty} f(t)=0$ such that:

$$
\left\|\Phi\left(\theta, t+t_{0}\right) P_{1}(\theta) x\right\| \leq f(t)\left\|\Phi\left(\theta, t_{0}\right) P_{1}(\theta) x\right\|
$$

for all $\left(\theta, t, t_{0}\right) \in \Theta \times \mathrm{R}_{+}^{2}$ and all $x \in X$
(v)' there exist a function $g: \mathrm{R}_{+} \rightarrow(0, \infty)$ with $\lim _{t \rightarrow \infty} g(t)=\infty$ such that :

$$
\left\|\Phi\left(\theta, t+t_{0}\right) P_{2}(\theta) x\right\| \geq g(t)\left\|\Phi\left(\theta, t_{0}\right) P_{2}(\theta) x\right\|
$$

for all $\left(\theta, t, t_{0}\right) \in \Theta \times \mathrm{R}_{+}^{2}$ and all $x \in X$.

Proposition 4.3

A linear skew-product semiflow π is uniformly exponentialyl trichotomic if and only if there exist the constants $N_{1}, N_{2}, N_{3}, N_{4} \geq 1, \quad v_{1}, v_{2}>0$ and two families of projectors $(P(\theta))_{\theta \in \Theta},(Q(\theta))_{\theta \in \Theta}$ such that:
(i) $P(\theta) Q(\theta)=Q(\theta) P(\theta)$, for all $\theta \in \Theta$
(ii) $\quad \Phi(\theta, t) P(\theta)=P(\sigma(\theta, t)) \Phi(\theta, t)$

$$
\Phi(\theta, t) Q(\theta)=Q(\sigma(\theta, t)) \Phi(\theta, t) \quad \text { for } \forall \theta \in \Theta \text { and } t \in \mathbf{R}_{+} .
$$

(iii) $\left\|\Phi\left(\theta, t+t_{0}\right) P(\theta) x\right\| \leq N_{1} e^{-\nu_{1} t}\left\|\Phi\left(\theta, t_{0}\right) P(\theta) x\right\|$ for $\forall\left(\theta, t, t_{0}\right) \in \Theta \times \mathrm{R}_{+}^{2}$ and $\forall x \in X$
(iv) $N_{2}\left\|\Phi\left(\theta, t+t_{0}\right) Q(\theta) x\right\| \geq e^{v_{2} t}\left\|\Phi\left(\theta, t_{0}\right) Q(\theta) x\right\|$ for $\forall\left(\theta, t, t_{0}\right) \in \Theta \times \mathrm{R}_{+}^{2}$ and $\forall x \in X$
(v) $\| \Phi\left(\theta, t+t_{0}\right)\left(I-Q(\theta) x\left\|\leq N_{3}\right\| \Phi\left(\theta, t_{0}\right)(I-Q(\theta)) x \| \quad\right.$ for $\quad \forall\left(\theta, t, t_{0}\right) \in \Theta \times \mathrm{R}_{+}^{2}$ and $\forall x \in X$
(vi) $\quad N_{4}\left\|\Phi\left(\theta, t+t_{0}\right)(I-P(\theta)) x\right\| \geq\left\|\Phi\left(\theta, t_{0}\right)(I-P(\theta)) x\right\| \quad$ for $\quad \forall\left(\theta, t, t_{0}\right) \in \Theta \times \mathrm{R}_{+}^{2}$ and $\forall x \in X$

References

[1] Chicone, C., Latushkin, Y., Evolution semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs 70 American Mathematical Society, 1999
[2] Chow, S. N., Leiva, H. Existence and roughness of exponential dichotomy for linear skew-product semiflow in Banach spaces, J. Differential Equations 120 (1995), 429-477
[3] Chow, S. N., Leiva, H. "Two definitions of exponential dichotomy for skew-product semiflow in Banach spaces", Proceeding of the American Mathematical Society, volume 124, number 4, 1996, 1071-1081
[4] Megan, M., Sasu, A.L. On uniform exponential stability of linear skewproduct semiflows in Banach spaces, Bulletin Belgian Mathematical Society Simon Stevin 9 (2002) 143-154
[5] Megan, M., Sasu, A.L., Sasu, B. Banach function spaces and exponential instability of evolution families, Arch. Math. (Brno) 39 (2003), 277-286
[6] Megan, M., Sasu, A.L., Sasu, B., On uniform exponential unstability of linear skew-product semiflows, Seminar on Mathematical Analysis and Applications in Control Theory, University of the West, Timişoara, 2002
[7] Megan, M., Stoica, C., Buliga, L., Trichotomy for linear skew-product semiflows, International Conference on Applied Analzsis an Differential Equations,Iaşi 2006
[8] Sasu A. L, Admisibilitate şi proprietăţi asimptotice ale cociclilor, Editura Politehnica Timişoara, 2005

Addresses:

- Assoc. Prof. Drd. Andrea A. Minda, "Eftimie Murgu" University of Reşiţa, Romania, Piaţa "Traian Vuia", nr. 1-4, Reşiţa, andreaminda@yahoo.com
- Asist.univ. drd. Mihaela Tomescu, University of Petrosani, mihaela_tomescu2000@yahoo.com

